Inici     Començant     Sobreviure a l'Univers    
Inhabited Sky
    News@Sky     Astro Fotografia     La Col·lecció     Fòrum     Blog New!     FAQ     Premsa     Login  

NGC 1222


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

The evolution of actively star-forming galaxies in the mid-infrared
In this paper we analyze the evolution of actively star-forming galaxiesin the mid-infrared (MIR). This spectral region, characterized bycontinuum emission by hot dust and by the presence of strong emissionfeatures generally ascribed to polycyclic aromatic hydrocarbon (PAH)molecules, is the most strongly affected by the heating processesassociated with star formation and/or active galactic nuclei (AGNs).Following the detailed observational characterization of galaxies in theMIR by the Infrared Space Observatory (ISO), we have updated themodelling of this spectral region in our spectrophotometric modelGRASIL. In the diffuse component we have updated the treatment of PAHsaccording to the model by Li & Draine. As for the dense phase of theinterstellar medium associated with the star-forming regions, themolecular clouds, we strongly decrease the abundance of PAHs as comparedto that in the cirrus, based on the observational evidence of the lackor weakness of PAH bands close to the newly formed stars, possibly dueto the destruction of the molecules in strong ultraviolet fields. Therobustness of the model is checked by fitting near-infrared to radiobroad-band spectra and the corresponding detailed MIR spectra of a largesample of galaxies, at once. With this model, we have analyzed thelarger sample of actively star-forming galaxies by Dale et al. We showthat the observed trends of galaxies in the ISO-IRAS-radio colour-colourplots can be interpreted in terms of the different evolutionary phasesof star formation activity, and the consequent different dominance inthe spectral energy distribution of the diffuse or dense phase of theISM. We find that the observed colours indicate a surprising homogeneityof the starburst phenomenon, allowing only a limited variation of themost important physical parameters, such as the optical depth of themolecular clouds, the time-scale of the escape of young stars from theirfor mation sites, and the gas consumption time-scale. In this paper wedo not attempt to reproduce the far-infrared coolest region in thecolour-colour plots, as we concentrate on models meant to reproduceactive star-forming galaxies, but we discuss possible requirements of amore complex modelling for the coldest objects.

Mid-Infrared Spectra of Classical AGNs Observed with the Spitzer Space Telescope
Full low-resolution (65

Simulating the Spitzer Mid-Infrared Color-Color Diagrams
We use a simple parameterization of the mid-IR spectra of a wide rangeof galaxy types in order to predict their distribution in the InfraredArray Camera (IRAC) 3.6, 4.5, 5.8, and 8.0 μm and MultibandPhotometer for Spitzer 24 μm color-color diagrams. We distinguishthree basic spectral types by the energetically dominant component inthe 3-12 μm regime: stellar-dominated, polycyclic aromatichydrocarbon (PAH)-dominated, and continuum-dominated. We use a Markovchain Monte Carlo approach to arrive at a more systematic and robustrepresentation of the mid-IR spectra of galaxies than do moretraditional approaches. We find that IRAC color-color plots are wellsuited to distinguishing the above spectral types, while the addition of24 μm data allows us to suggest practical three-color cuts thatpreferentially select higher redshift sources of a specific type. Wecompare our simulations with the color-color plot obtained by theSpitzer First Look Survey and find reasonable agreement. Lastly, wediscuss other applications as well as future directions for this work.

The distribution of atomic gas and dust in nearby galaxies - III. Radial distributions and metallicity gradients
The radial distribution of dust and gas in 38 nearby galaxies isinvestigated, using a sample of galaxies for which matched resolution(25 arcsec) neutral hydrogen (HI) and 850-μm images are available.Most of these radial profiles are fitted well by an exponential model,and the derived 850-μm scalelengths are proportional to the HIscalelengths. From this relation, it is found that the metallicitygradients of these galaxies are much shallower than previous studies,unless the dust temperature is constant within the disc, or asignificant component of molecular gas exists at large radii that is nottraced by CO observations.

The distribution of atomic gas and dust in nearby galaxies - II. Further matched-resolution Very Large Array H I and SCUBA 850-μm images
We present Very Large Array (VLA) C-array 21-cm HI images of galaxiesfrom the SCUBA Local Universe Galaxy Survey which have been observed at850 μm with the James Clerk Maxwell Telescope. Matched-resolution (~25 arcsec) HI images of 17 galaxies are presented and compared with850-μm images. HI or 850-μm images of an additional six galaxieswhich were detected at only one wavelength are presented. Additionally,lower resolution H I observations of nine galaxies are presented. Theobservations of these galaxies, along with results previously presented,do not show any obvious trends in the HI/dust or H2/dust massratios with morphological type.

Infrared mergers and infrared quasi-stellar objects with galactic winds - I. NGC 2623: nuclear outflow in a proto-elliptical candidate
We present the first results of a study of the morphology, kinematicsand ionization structure of infrared (IR) mergers/quasi-stellar objects(QSOs) with galactic winds. This study is based mainly on INTEGRALtwo-dimensional (2D) fibre spectroscopy [obtained on the 4.2-m WilliamHerschel Telescope (WHT), La Palma] combined with high-resolution HubbleSpace Telescope (HST) observations.Clear evidence of outflow (OF) from the nucleus of the luminous infraredmerger NGC 2623 is reported. Specifically: (i) the INTEGRAL 2D Hα,[N II] and [S II] emission line maps depict a cone-shaped extendednebula that emerges from the nucleus, with an aperture angle θ=100°+/- 5° and reaching a distance of ~3.2 kpc from the nucleus;(ii) inside the nebula and in the central region, all the emission-lineWHT spectra show low velocity blue/OF components, with= (-405 +/- 35) km s-1 and (iii) in theOF nebula, the emission line ratios are consistent with ionization by adusty nuclear starburst plus shock heating. These results are consistentwith a galactic wind process powered mainly by a nuclear starburst.The INTEGRAL 2D Hα and [N II]λ6583 velocity field (VF) mapsfor the main body of NGC 2623 (16.4 × 12.3 arcsec2;~5.9 × 4.4 kpc2) show outflow motion in the nuclear andthe Hα+[N II] nebular regions superposed on a general circularmotion. This circular motion prevails inside r~ 1.5 kpc, and for largerradii we detected non-circular motions. In the central region, theaverage observed rotation curve was fitted with a model corresponding toa single-component Plummer spherical potential. After the subtraction ofthe Plummer and an axisymmetric polynomial model, the residues of the VFin both cases indicate ejection as the origin of the cone nebula. Thefitted Plummer model implies a total mass of MT= 1.5 ×1010 Msolar and a spherical distribution of matterin the central region.The high-resolution HST WFPC2 F555W (~V) and F814W (~I) broad-bandimages display a strongly obscured nucleus in the apex of a smallnuclear cone, an asymmetrical clumpy spiral arm located to the east ofthe nucleus, a ring plus an arc to the west and several large-scalefilaments of dust. A good r1/4-law fit to the HST WFPC2 Iband luminosity profile was found.In 85 per cent of the INTEGRAL 2D field we measure very high values(>1) of the [N II]λ6583/Hα and [S II]λ6717 +31/Hα ratios, suggesting that shocks are important on large scales(in almost all the main body). Furthermore, the 2D full width at halfmaximum FWHM-[N II] and VF residual maps show a good spatialcorrelation, suggesting that the OF shocks ionize the gas and broadenthe emission lines. However, close to the nucleus, the OF nebula showslow values of the [N II]λ6583/Hα ratio (in the range0.1-0.4), indicating that photoionization by a dusty nuclear starburstalso plays a significant role in the excitation of the nebula. Thecharacteristics of the nucleus of NGC 2623 could be associated with astarburst-related LINER.The properties found in IR mergers/QSOs with galactic winds mainlyunderline the importance of studying the possible link between IRmergers with starburst + galactic wind -> IR QSOs with compositenature + galactic wind, and elliptical galaxies.

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

The PDS versus Markarian starburst galaxies: comparing strong and weak IRAS emitter at 12 and 25 μm in the nearby Universe
The characteristics of the starburst galaxies from the Pico dos Diassurvey (PDS) are compared with those of the nearby ultraviolet (UV)bright Markarian starburst galaxies, having the same limit in redshift(vh < 7500 km s-1) and absolute B magnitude(MB < -18). An important difference is found: theMarkarian galaxies are generally undetected at 12 and 25 μm in IRAS.This is consistent with the UV excess shown by these galaxies andsuggests that the youngest star-forming regions dominating thesegalaxies are relatively free of dust.The far-infrared selection criteria for the PDS are shown to introduce astrong bias towards massive (luminous) and large size late-type spiralgalaxies. This is contrary to the Markarian galaxies, which are found tobe remarkably rich in smaller size early-type galaxies. These resultssuggest that only late-type spirals with a large and massive disc arestrong emitters at 12 and 25 μm in IRAS in the nearby Universe.The Markarian and PDS starburst galaxies are shown to share the sameenvironment. This rules out an explanation of the differences observedin terms of external parameters. These differences may be explained byassuming two different levels of evolution, the Markarian being lessevolved than the PDS galaxies. This interpretation is fully consistentwith the disc formation hypothesis proposed by Coziol et al. to explainthe special properties of the Markarian SBNG.

Infrared Emission of Normal Galaxies from 2.5 to 12 Micron: Infrared Space Observatory Spectra, Near-Infrared Continuum, and Mid-Infrared Emission Features
We present ISOPHOT spectra of the regions 2.5-4.9 μm and 5.8-11.6μm for a sample of 45 disk galaxies from the US Infrared SpaceObservatory Key Project on Normal Galaxies. The galaxies were selectedto span the range in global properties of normal, star-forming diskgalaxies in the local universe. The spectra can be decomposed into threespectral components: (1) continuum emission from stellar photospheres,which dominates the near-infrared (NIR; 2.5-4.9 μm) spectral region;(2) a weak NIR excess continuum, which has a color temperature of~103 K, carries a luminosity of a few percent of the totalfar-infrared (FIR) dust luminosity LFIR and most likelyarises from the interstellar medium (ISM); and (3) the well-known broademission features at 6.2, 7.7, 8.6, and 11.3 μm, which are generallyattributed to aromatic carbon particles. These aromatic features inemission (AFEs) dominate the mid-infrared (MIR; 5.8-11.6 μm) part ofthe spectrum and resemble the so-called type A spectra observed in manynonstellar sources and the diffuse ISM in our own Galaxy. The fewnotable exceptions include NGC 4418, where a dust continuum replaces theAFEs in MIR, and NGC 1569, where the AFEs are weak and the strongestemission feature is [S IV] 10.51 μm. The relative strengths of theAFEs vary by 15%-25% among the galaxies. However, little correlation isseen between these variations and either IRAS 60 μm/100 μm fluxdensity ratio R(60/100) or the FIR/blue luminosity ratioLFIR/LB, two widely used indicators of the currentstar formation activity, suggesting that the observed variations are nota consequence of the radiation field differences among the galaxies. Wedemonstrate that the NIR excess continuum and AFE emission arecorrelated, suggesting that they are produced by similar mechanisms andsimilar (or the same) material. On the other hand, as the current starformation activity increases, the overall strengths of the AFEs and theNIR excess continuum drop significantly with respect to that of the FIRemission from large dust grains. In particular, the summed luminosity ofthe AFEs falls from ~0.2 LFIR for the most ``IR-quiescent''galaxies to ~0.1 LFIR for the most ``IR-active'' galaxies.This is likely a consequence of the preferential destruction in intenseradiation fields of the small carriers responsible for the NIR/AFEemission.Based on observations with ISO, an ESA project with instruments fundedby ESA member states (especially the PI countries, France, Germany, theNetherlands, and the United Kingdom) and with the participation of ISASand NASA.

Redshift-Distance Survey of Early-Type Galaxies: Spectroscopic Data
We present central velocity dispersions and Mg2 line indicesfor an all-sky sample of ~1178 elliptical and S0 galaxies, of which 984had no previous measures. This sample contains the largest set ofhomogeneous spectroscopic data for a uniform sample of ellipticalgalaxies in the nearby universe. These galaxies were observed as part ofthe ENEAR project, designed to study the peculiar motions and internalproperties of the local early-type galaxies. Using 523 repeatedobservations of 317 galaxies obtained during different runs, the dataare brought to a common zero point. These multiple observations, takenduring the many runs and different instrumental setups employed for thisproject, are used to derive statistical corrections to the data and arefound to be relatively small, typically <~5% of the velocitydispersion and 0.01 mag in the Mg2 line strength. Typicalerrors are about 8% in velocity dispersion and 0.01 mag inMg2, in good agreement with values published elsewhere.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

Redshift-Distance Survey of Early-Type Galaxies: Circular-Aperture Photometry
We present R-band CCD photometry for 1332 early-type galaxies, observedas part of the ENEAR survey of peculiar motions using early-typegalaxies in the nearby universe. Circular apertures are used to tracethe surface brightness profiles, which are then fitted by atwo-component bulge-disk model. From the fits, we obtain the structuralparameters required to estimate galaxy distances using theDn-σ and fundamental plane relations. We find thatabout 12% of the galaxies are well represented by a pure r1/4law, while 87% are best fitted by a two-component model. There are 356repeated observations of 257 galaxies obtained during different runsthat are used to derive statistical corrections and bring the data to acommon system. We also use these repeated observations to estimate ourinternal errors. The accuracy of our measurements are tested by thecomparison of 354 galaxies in common with other authors. Typical errorsin our measurements are 0.011 dex for logDn, 0.064 dex forlogre, 0.086 mag arcsec-2 for<μe>, and 0.09 for mRC,comparable to those estimated by other authors. The photometric datareported here represent one of the largest high-quality and uniformall-sky samples currently available for early-type galaxies in thenearby universe, especially suitable for peculiar motion studies.Based on observations at Cerro Tololo Inter-American Observatory (CTIO),National Optical Astronomy Observatory, which is operated by theAssociation of Universities for Research in Astronomy, Inc., undercooperative agreement with the National Science Foundation (NSF);European Southern Observatory (ESO); Fred Lawrence Whipple Observatory(FLWO); and the MDM Observatory on Kitt Peak.

SCUBA observations of galaxies with metallicity measurements: a new method for determining the relation between submillimetre luminosity and dust mass
Using a new technique, we have determined a value for the constant ofproportionality between submillimetre emission and dust mass, the dustmass-absorption coefficient (κd) at 850μm. Ourmethod has an advantage over previous methods in that we avoidassumptions about the properties of dust in the interstellar medium. Ouronly assumption is that the fraction of metals incorporated in the dust(ɛ) in galaxies is a universal constant. To implement ourmethod, we require objects that have submillimetre and far-infrared fluxmeasurements as well as gas mass and metallicity estimates. We presentdata for all the galaxies with suitable measurements, including newsubmillimetre maps for five galaxies. We find κ850=0.07 +/- 0.02 m2 kg-1. We have also been able touse our sample to investigate our assumption that ɛ is auniversal constant. We find no evidence that ɛ is different fordwarf and giant galaxies, and show that the scatter in ɛ fromgalaxy to galaxy is apparently quite small.

Hot dust in normal star-forming galaxies: JHKL' photometry of the ISO Key Project sample
We present JHK and 3.8 mu m (L') photometry of 26 galaxies in theInfrared Space Observatory (ISO) Normal Galaxy Key Project (KP) sampleand of seven normal ellipticals with the aim of investigating the originof the 4 mu m emission. The majority of the KP galaxies, and all theellipticals, have K-L<~ 1.0, consistent with stellar photospheresplus moderate dust extinction. Ten of the 26 KP galaxies have K-L>~1.0, corresponding to a flat or rising 4 mu m continuum, consistent withsignificant emission from hot dust at 600-1000 K. K-L is anticorrelatedwith ISO flux ratio F6.75/F15, weakly correlatedwith line ratio [O I]/[C II], but not with [C II]/FIR or IRAS ratioF60/F100. Photodissociation-region models forthese galaxies show that the hot dust responsible for red K-L resides inregions of high pressure and intense far-ultraviolet radiation field.Taken together, these results suggest that star formation in normalstar-forming galaxies can assume two basic forms: an ``active'',relatively rare, mode characterized by hot dust, suppressed AromaticFeatures in Emission (AFEs), high pressure, and intense radiation field;and the more common ``passive'' mode that occurs under more quiescentphysical conditions, with AFEs, and without hot dust. The occurrence ofthese modes appears to only weakly depend on the star-formation rate perunit area. Passive star formation over large scales makes up the bulk ofstar-forming activity locally, while the ``active'' regime may dominateat high redshifts. Based on data obtained at TIRGO, Gornergrat,Switzerland.

Near-infrared spectroscopy of starburst galaxies
We present new K-band spectroscopy for a sample of 48 starburstgalaxies, obtained using UKIRT in Hawaii. This constitutes a fair sampleof the most common types of starburst galaxies found in the nearbyUniverse, containing galaxies with different morphologies, masses andmetallicities, with far-infrared luminosityLIR<1010Lsolar. The variety ofnear-infrared spectral features shown by these galaxies impliesdifferent bursts characteristics, which suggests that we survey galaxieswith different star formation histories or at different stages of theirburst evolution. Using synthetic starburst models, we conclude that theensemble of parameters that best describes starburst galaxies in thenearby UniverseQ1 is a constant rate of star formation, a Salpeterinitial mass function (IMF) with an upper mass cut-off ofMup=30Msolar and bursts ages between 10Myr and1Gyr. The model is fully consistent with the differences observed in theoptical and far-infrared (FIR) between the different types ofstarbursts. It suggests that Hii galaxies have younger bursts and lowermetallicities than starburst nucleus galaxies (SBNGs), while luminousinfrared galaxies (LIRGs) have younger bursts but higher metallicities.Although the above solution from the synthetic starburst model is fullyconsistent with our data, it may not constitute a strong constraint onthe duration of the bursts and the IMF. A possible alternative may be asequence of short bursts (which may follow an universal IMF) over arelatively long period of time. In favour of the multiple-bursthypothesis, we distinguish in our spectra some variations ofnear-infrared (NIR) features with the aperture that can be interpretedas evidence that the burst regions are not homogeneous in space andtime. We also found that the burst stellar populations are dominated byearly-type B stars, a characteristic which seems difficult to explainwith only one evolved burst. Our observations suggest that the starburstphenomenon must be a sustained or self-sustained phenomenon: either starformation is continuous in time, or multiple bursts happen in sequenceover a relatively long period of time. The generality of ourobservations implies that this is a characteristic of starburst galaxiesin the nearby Universe.

Supernovae in the nuclear regions of starburst galaxies
The feasibility of using near-infrared observations to discoversupernovae in the nuclear and circumnuclear regions of nearby starburstgalaxies is investigated. We provide updated estimates of the intrinsiccore-collapse supernova rates in these regions. We discuss the problemof extinction, and present new estimates of the extinction towards 33supernova remnants in the starburst galaxy M 82. This is done using Hiand H2 column density measurements. We estimate the molecularto atomic hydrogen mass ratio to be 7.4+/-1.0 in M 82. We have assemblednear-infrared photometric data for a total of 13 core-collapsesupernovae, some unpublished hitherto. This constitutes the largestdatabase of infrared light curves for such events. We show that theinfrared light curves fall into two classes, `ordinary' and `slowlydeclining'. Template JHKL light curves are derived for both classes. Forordinary core-collapse supernovae, the average peak JHKL absolutemagnitudes are -18.4, -18.6, -18.6 and -19.0 respectively. The slowlydeclining core-collapse supernovae are found to be significantly moreluminous than the ordinary events, even at early times, having averagepeak JHKL absolute magnitudes of -19.9, -20.0, -20.0 and -20.4respectively. We investigate the efficiency of a computerized imagesubtraction method in supernova detection. We then carry out a MonteCarlo simulation of a supernova search using K-band images of NGC 5962.The effects of extinction and observing strategy are discussed. Weconclude that a modest observational programme will be able to discovera number of nuclear supernovae.

Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium
The most important cooling lines of the neutral interstellar medium(ISM) lie in the far-infrared (FIR). We present measurements by theInfrared Space Observatory Long Wavelength Spectrometer of seven linesfrom neutral and ionized ISM of 60 normal, star-forming galaxies. Thegalaxy sample spans a range in properties such as morphology, FIR colors(indicating dust temperature), and FIR/blue ratios (indicating starformation activity and optical depth). In two-thirds of the galaxies inthis sample, the [C II] line flux is proportional to FIR dust continuum.The other one-third show a smooth decline inL[CII]/LFIR with increasing Fν(60μm)/Fν(100 μm) and LFIR/LB,spanning a range of a factor of more than 50. Two galaxies at the warmand active extreme of the range haveL[CII]/LFIR<2×10-4 (3 σupper limit). This is due to increased positive grain charge in thewarmer and more active galaxies, which leads to less efficient heatingby photoelectrons from dust grains. The ratio of the two principalphotodissociation region (PDR) cooling linesL[OI]/L[CII] shows a tight correlation withFν(60 μm)/Fν(100 μm), indicating thatboth gas and dust temperatures increase together. We derive atheoretical scaling between [N II] (122 μm) and [C II] from ionizedgas and use it to separate [C II] emission from neutral PDRs and ionizedgas. Comparison of PDR models of Kaufman et al. with observed ratios of(1) L[OI]/L[CII] and(L[CII]+L[OI])/LFIR and (2)L[OI]/LFIR and Fν(60μm)/Fν(100 μm) yields far-UV flux G0 andgas density n. The G0 and n values estimated from the twomethods agree to better than a factor of 2 and 1.5, respectively, inmore than half the sources. The derived G0 and n correlatewith each other, and G0 increases with n asG0~nα, where α~1.4 . We interpret thiscorrelation as arising from Strömgren sphere scalings if much ofthe line and continuum luminosity arises near star-forming regions. Thehigh values of PDR surface temperature (270-900 K) and pressure(6×104-1.5×107 K cm-3)derived also support the view that a significant part of grain and gasheating in the galaxies occurs very close to star-forming regions. Thedifferences in G0 and n from galaxy to galaxy may be due todifferences in the physical properties of the star-forming clouds.Galaxies with higher G0 and n have larger and/or denserstar-forming clouds.

The SCUBA Local Universe Galaxy Survey - I. First measurements of the submillimetre luminosity and dust mass functions
This is the first of a series of papers presenting results from theSCUBA Local Universe Galaxy Survey (SLUGS), the first statistical surveyof the submillimetre properties of the local Universe. As the initialpart of this survey, we have used the SCUBA camera on the James ClerkMaxwell Telescope to observe 104 galaxies from the IRAS Bright GalaxySample. We present here the 850-μm flux measurements. The 60-, 100-,and 850-μm flux densities are well fitted by single-temperature dustspectral energy distributions, with the sample mean and standarddeviation for the best-fitting temperature beingTd=35.6+/-4.9K and for the dust emissivity indexβ=1.3+/-0.2. The dust temperature was found to correlate with60-μm luminosity. The low value of β may simply mean that thesegalaxies contain a significant amount of dust that is colder than thesetemperatures. We have estimated dust masses from the 850-μm fluxesand from the fitted temperature, although if a colder component ataround 20K is present (assuming a β of 2), then the estimated dustmasses are a factor of 1.5-3 too low. We have made the first directmeasurements of the submillimetre luminosity function (LF) and of thedust mass function. Unlike the IRAS 60-μm LF, these are well fittedby Schechter functions. The slope of the 850-μm LF at lowluminosities is steeper than -2, implying that the LF must flatten atluminosities lower than we probe here. We show that extrapolating the60-μm LF to 850μm using a single temperature and β does notreproduce the measured submillimetre LF. A population of `cold' galaxies(Td<25K) emitting strongly at submillimetre wavelengthswould have been excluded from the 60-μm-selected sample. If suchgalaxies do exist, then this estimate of the 850-μm flux is biased(it is underestimated). Whether such a population does exist is unknownat present. We correlate many of the global galaxy properties with theFIR/submillimetre properties. We find that there is a tendency for lessluminous galaxies to contain hotter dust and to have a greater starformation efficiency (cf. Young). The average gas-to-dust ratio for thesample is 581+/-43 (using both the atomic and molecular hydrogen), whichis significantly higher than the Galactic value of 160. We believe thatthis discrepancy is probably due to a `cold dust' component atTd<=20K in our galaxies. There is a surprisingly tightcorrelation between dust mass and the mass of molecular hydrogen,estimated from CO measurements, with an intrinsic scatter of ~=50percent.

Compact Radio Emission from Warm Infrared Galaxies
In this paper, we present a comparison between the optical spectroscopicdata and the incidence of compact radio emission for a sample of 60 warminfrared galaxies. We find that 80% of optically classified activegalactic nucleus (AGN)-type galaxies contain compact radio sources,while 37% of optically classified starburst galaxies contain compactradio sources. The compact radio luminosity shows a bimodaldistribution, indicating two populations in our sample. The majority ofthe higher radio luminosity class (L>104Lsolar) are AGNs, while the majority of the lower radioluminosity class (L<104 Lsolar) are starbursts.The compact radio emission in the starburst galaxies may be due toeither obscured AGNs or complexes of extremely luminous supernovae suchas that seen in Arp 220. The incidence of optically classified AGNsincreases with increasing far-infrared (FIR) luminosity. Using FIRcolor-color diagrams, we find that globally the energetics of 92% of thegalaxies in our sample are dominated by starburst activity, including60% of galaxies that we find to contain AGNs on the basis of theiroptical classification. The remainder are energetically dominated bytheir AGNs in the infrared. For starburst galaxies, electron densityincreases with dust temperature, consistent with the merger model forinfrared galaxies.

ISO Mid-Infrared Observations of Normal Star-Forming Galaxies: The Key Project Sample
We present mid-infrared maps and preliminary analysis for 61 galaxiesobserved with the ISOCAM instrument aboard the Infrared SpaceObservatory. Many of the general features of galaxies observed atoptical wavelengths-spiral arms, disks, rings, and bright knots ofemission-are also seen in the mid-infrared, except the prominent opticalbulges are absent at 6.75 and 15 μm. In addition, the maps are quitesimilar at 6.75 and 15 μm, except for a few cases where a centralstarburst leads to lower Iν(6.75μm)/Iν(15 μm) ratios in the inner region. We alsopresent infrared flux densities and mid-infrared sizes for thesegalaxies. The mid-infrared color Iν(6.75μm)/Iν(15 μm) shows a distinct trend with thefar-infrared color Iν(60 μm)/Iν(100μm). The quiescent galaxies in our sample [Iν(60μm)/Iν(100 μm)<~0.6] show Iν(6.75μm)/Iν(15 μm) near unity, whereas this ratio dropssignificantly for galaxies with higher global heating intensity levels.Azimuthally averaged surface brightness profiles indicate the extent towhich the mid-infrared flux is centrally concentrated, and provideinformation on the radial dependence of mid-infrared colors. Thegalaxies are mostly well resolved in these maps: almost half of themhave <10% of their flux in the central resolution element. Acomparison of optical and mid-infrared isophotal profiles indicates thatthe flux at 4400 Å near the optical outskirts of the galaxies isapproximately 8 (7) times that at 6.75 μm (15 μm), comparable toobservations of the diffuse quiescent regions of the Milky Way. Thispaper is based on observations with the Infrared Space Observatory(ISO). ISO is an ESA project with instruments funded by ESA memberstates (especially the PI countries: France, Germany, The Netherlands,and the United Kingdom) and with the participation of ISAS and NASA.

The Supernova Rate in Starburst Galaxies
We conducted an optical CCD search for supernovae in a sample of 142bright [m(B) <= 16 mag], nearby (z<=0.03) starburst galaxies overthe period 1988 December to 1991 June, to a limiting R-band magnitude of18. Five supernovae were found, in all cases outside the host galaxy'snucleus. We determine supernova rates (in supernova units or SNU) in theextranuclear regions to be 0.7 h^2 SNU for Type Ia, 0.7 h^2 SNU for TypeIb/c, and ~0.6 h^2 SNU for Type II, with large uncertainties but upperlimits of 2.2 h^2, 2.5 h^2, and 1.7 h^2 SNU, respectively. These ratesare similar to those measured in ``normal'' galaxies. We found noevidence for a supernova-induced brightening in any galactic nucleusand, with a few reasonable assumptions, can place upper limits of 9 h^2,12 h^2, and 7 h^2 SNU on the rates of unobscured supernovae Types Ia,Ib/c, and II, respectively, inside the nuclei.

The Pico DOS Dias Survey Starburst Galaxies
We discuss the nature of the galaxies found in the Pico dos Dias Survey(PDS) for young stellar objects. The PDS galaxies were selected from theIRAS Point Source catalog. They have flux density of moderate or highquality at 12, 25, and 60 μm and spectral indices in the ranges -3.00<= alpha(25, 12) <= + 0.35 and -2.50 <= alpha(60, 25) <=+0.85. These criteria allowed the detection of 382 galaxies, which are amixture of starburst and Seyfert galaxies. Most of the PDS Seyfertgalaxies are included in the catalog of warm IRAS sources by de Grijp etal. The remaining galaxies constitute a homogeneous sample of luminous[log F (L_B/L_ȯ) = 9.9 +/- 0.4] starburst galaxies, 67% of whichwere not recognized as such before. The starburst nature of the PDSgalaxies is established by comparing their L_IR/L_B ratios and IRAScolors with a sample of emission-line galaxies from the literaturealready classified as starburst galaxies. The starburst galaxies show anexcess of FIR luminosity, and their IRAS colors are significantlydifferent from those of Seyfert galaxies-99% of the starburst galaxiesin our sample have a spectral index alpha(60, 25) < -1.9. As opposedto Seyfert galaxies, very few PDS starbursts are detected in X-rays. Inthe infrared, the starburst galaxies form a continuous sequence withnormal galaxies. But they generally can be distinguished from normalgalaxies by their spectral index alpha(60, 25) > -2.5. This colorcutoff also marks a change in the dominant morphologies of the galaxies:the normal IRAS galaxies are preferentially late-type spirals (Sb andlater), while the starbursts are more numerous among early-type spirals(earlier than Sbc). This preference of starbursts for early-type spiralsis not new, but a trait of the massive starburst nucleus galaxies(Coziol et al.). As in other starburst nucleus galaxy samples, the PDSstarbursts show no preference for barred galaxies. No difference isfound between the starbursts detected in the FIR and those detected onthe basis of UV excess. The PDS starburst galaxies represent the FIRluminous branch of the UV-bright starburst nucleus galaxies, with meanFIR luminosity log (L_IR/L_ȯ) = 10.3 +/- 0.5 and redshifts smallerthan 0.1. They form a complete sample limited in flux in the FIR at 2 x10^-10 ergs cm^-2 s^-1.

The Southern Sky Redshift Survey
We report redshifts, magnitudes, and morphological classifications for5369 galaxies with m_B <= 15.5 and for 57 galaxies fainter than thislimit, in two regions covering a total of 1.70 sr in the southerncelestial hemisphere. The galaxy catalog is drawn primarily from thelist of nonstellar objects identified in the Hubble Space TelescopeGuide Star Catalog (GSC). The galaxies have positions accurate to ~1"and magnitudes with an rms scatter of ~0.3 mag. We compute magnitudes(m_SSRS2) from the relation between instrumental GSC magnitudes and thephotometry by Lauberts & Valentijn. From a comparison with CCDphotometry, we find that our system is homogeneous across the sky andcorresponds to magnitudes measured at the isophotal level ~26 magarcsec^-2. The precision of the radial velocities is ~40 km s^-1, andthe redshift survey is more than 99% complete to the m_SSRS2 = 15.5 maglimit. This sample is in the direction opposite that of the CfA2; incombination the two surveys provide an important database for studies ofthe properties of galaxies and their large-scale distribution in thenearby universe. Based on observations obtained at Cerro TololoInter-American Observatory, National Optical Astronomy Observatories,operated by the Association of Universities for Research in Astronomy,Inc., under cooperative agreement with the National Science Foundation;Complejo Astronomico El Leoncito, operated under agreement between theConsejo Nacional de Investigaciones Científicas de laRepública Argentina and the National Universities of La Plata,Córdoba, and San Juan; the European Southern Observatory, LaSilla, Chile, partially under the bilateral ESO-ObservatórioNacional agreement; Fred Lawrence Whipple Observatory;Laboratório Nacional de Astrofísica, Brazil; and the SouthAfrican Astronomical Observatory.

Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies
We present a catalogue of aperture photometry of galaxies, in UBVRI,assembled from three different origins: (i) an update of the catalogueof Buta et al. (1995) (ii) published photometric profiles and (iii)aperture photometry performed on CCD images. We explored different setsof growth curves to fit these data: (i) The Sersic law, (ii) The net ofgrowth curves used for the preparation of the RC3 and (iii) A linearinterpolation between the de Vaucouleurs (r(1/4) ) and exponential laws.Finally we adopted the latter solution. Fitting these growth curves, wederive (1) the total magnitude, (2) the effective radius, (3) the colourindices and (4) gradients and (5) the photometric type of 5169 galaxies.The photometric type is defined to statistically match the revisedmorphologic type and parametrizes the shape of the growth curve. It iscoded from -9, for very concentrated galaxies, to +10, for diffusegalaxies. Based in part on observations collected at the Haute-ProvenceObservatory.

Mid-Infrared Continuum of Starburst Nuclei: Contribution from Hot Large Grains within H II Regions?
The IRAS 12 and 25 mu m fluxes are compared with the Br gamma flux in asample of starburst nuclei. Good correlations are found between them.The subsequent analysis indicates the presence of two components in themid-infrared continuum: the nonthermal emission from "small grains"(<=100 A) which are heated transiently by nonionizing photons outsidethe H II regions and the thermal emission from "large grains" which areheated to ~140 K by ionizing, nonionizing, and Ly alpha photons insidethe H II regions. The small grains emitting at 12 mu m are depleted by~20% with respect to cirrus clouds in our Galaxy. The ratio of amountsof large grains to gas in the H II regions is comparable to the standardinterstellar value. The emission from hot large grains appears to bemore enhanced over the emission from small grains in starburst nucleiwith higher excitations.

A CO survey of galaxies with the SEST and the 20-m Onsala telescope.
A large survey of galaxies in the J=1-0 CO line, performed during1985-1988 using the 15-m SEST and the 20-m millimetre wave telescope ofOnsala Space Observatory, is presented. The HPBW of the telescopes are44" and 33" at 115GHz, respectively. The central positions of 168galaxies were observed and 101 of these were detected in the CO line.More than 20% of these are new detections. Maps of some of the galaxiesare also presented.

A Spectrophotometric Survey of Merging Galaxies
We present long-slit spectrophotometry of 40 merging or stronglyinteracting galaxy systems in the wavelength range 3650-7100 A. Alongwith optically selected objects, the sample includes 10 ultraluminousIRAS galaxies with evidence of ongoing merger activity. The data show awide variety of phenomena, with spectra resembling those of isolatedelliptical galaxies, early and late-type spiral galaxies, activegalactic nuclei starbursts, and poststarburst systems.

A multifrequency radio continuum and IRAS faint source survey of markarian galaxies
Results are presented from a multifrequency radio continumm survey ofMarkarian galaxies (MRKs) and are supplemented by IRAS infrared datafrom the Faint Source Survey. Radio data are presented for 899 MRKsobserved at nu = 4.755 GHz with the National Radio Astronomy Observatory(NRAO)-Green Bank 300 foot (91 m) telescope, including nearly 88% ofthose objects in Markarian lists VI-XIV. In addition, 1.415 GHzmeasurements of 258 MRKs, over 30% of the MRKs accessible from theNational Aeronomy and Ionosphere Center (NAIC)-Arecibo, are reported.Radio continuum observations of smaller numbers of MRKs were made at10.63 GHz and at 23.1 GHz and are also presented. Infrared data from theIRAS Faint Source Survey (Ver. 2) are presented for 944 MRKs, withreasonably secure identifications extracted from the NASA/IPACExtragalactic Database. MRKs exhibit the same canonical infraredcharacteristics as those reported for various other galaxy samples, thatis well-known enhancement of the 25 micrometer/60 micrometer color ratioamong Seyfert MRKs, and a clear tendency for MRKs with warmer 60micrometer/100 micrometer colors to also possess cooler 12 micrometer/25micrometer colors. In addition, non-Seyfert are found to obey thewell-documented infrared/radio luminosity correlation, with the tightestcorrelation seen for starburst MRKs.

Multiwavelength Energy Distributions and Bolometric Luminosities of the 12 Micron Galaxy Sample
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJ...453..616S&db_key=AST

Spectrophotometric Properties of Merging Galaxies
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJ...450..547L&db_key=AST

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Eridanus
Ascensió Recta:03h08m56.70s
Declinació:-02°57'18.0"
Dimensions aparents:1.549′ × 1.175′

Catàlegs i designacions:
Noms Propis   (Edit)
NGC 2000.0NGC 1222
HYPERLEDA-IPGC 11774

→ Sol·licitar més catàlegs i designacions de VizieR