Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

δ Gem (Wasat)



Upload your image

DSS Images   Other Images

Related articles

Rotation- and temperature-dependence of stellar latitudinal differential rotation
More than 600 high resolution spectra of stars with spectral type F andlater were obtained in order to search for signatures of differentialrotation in line profiles. In 147 stars the rotation law could bemeasured, with 28 of them found to be differentially rotating.Comparison to rotation laws in stars of spectral type A reveals thatdifferential rotation sets in at the convection boundary in theHR-diagram; no star that is significantly hotter than the convectionboundary exhibits the signatures of differential rotation. Four lateA-/early F-type stars close to the convection boundary and at v sin{i}≈ 100 km s-1 show extraordinarily strong absolute shear atshort rotation periods around one day. It is suggested that this is dueto their small convection zone depth and that it is connected to anarrow range in surface velocity; the four stars are very similar inTeff and v sin{i}. Detection frequencies of differentialrotation α = ΔΩ/Ω > 0 were analyzed in starswith varying temperature and rotation velocity. Measurable differentialrotation is more frequent in late-type stars and slow rotators. Thestrength of absolute shear, ΔΩ, and differential rotationα are examined as functions of the stellar effective temperatureand rotation period. The highest values of ΔΩ are found atrotation periods between two and three days. In slower rotators, thestrongest absolute shear at a given rotation rateΔΩmax is given approximately byΔΩmax ∝ P-1, i.e.,αmax ≈ const. In faster rotators, bothαmax and ΔΩmax diminish lessrapidly. A comparison with differential rotation measurements in starsof later spectral type shows that F-stars exhibit stronger shear thancooler stars do and the upper boundary in absolute shear ΔΩwith temperature is consistent with the temperature-scaling law found inDoppler Imaging measurements.

Analysis of the Dynamical Instability of Several Multiple Stars with Weak Hierarchy
The dynamical stability of 16 multiple stars is analyzed using MonteCarlo simulations with allowance for the errors in the observationaldata. The analysis was carried out by varying the uncertainties in theinitial observational data. Six different stability criteria wereconsidered, and the dynamical evolution was studied using numericalsimulations. Eleven of the systems are probably stable, whereas fivesystems (HD 40887, HD 136176, HD 150680, HD 217675, and HD 222326) areprobably unstable (the probability that they are unstable is 0.94 ormore accordingt o the results of forward and backward simulations overintervals of 106 yr). The results of the simulations were mostconsistent with the criteria of Mardling-Aarseth (the correlationcoefficient between the probabilities of disruption inferred from thestability criterion and numerical integration was r = 0.998),Valtonen-Karttunen (r = 0.998), and Eggleton-Kiseleva (r = 0.997). Inabout 92 93% of all cases, these criteria yield results that areconsistent with the numerical simulations. These criteria also yieldhigh disruption probabilities for the unstable systems. Scenarios forthe formation of such systems are discussed: temporary capture of afield star by a close binary, perturbation of a stable multiple systemby a massive field object, and disruption of small stellar groups orclusters. The probabilities that these scenarios are realized areanalyzed.

Analysis of the Dynamic Stability of Selected Multiple Stars with Weak Hierarchy
The stability of multiple systems with known orbital elements and withsubsystems occupying adjacent hierarchy levels is analyzed using sixstability criteria and numerical simulations of their dynamicalevolution. All the stability criteria considered are in qualitativeagreement with the numerical computations. Of the 16 systems studied, 11are confirmed to be stable and five (HD 40887, HD 136176, HD 150680, HD217675, and HD 222326) may be unstable on time scales of ˜106 yr orless. The small dynamical ages of the unstable systems may indicate thatthey have captured components during encounters between close binariesand field or moving cluster stars. The instability could also resultfrom the perturbation of a stable system when it approaches a massiveobject (star, black hole, or molecular cloud). It is possible that someof the unstable systems are remnants of small clusters or stellargroups.

Observed Orbital Eccentricities
For 391 spectroscopic and visual binaries with known orbital elementsand having B0-F0 IV or V primaries, we collected the derivedeccentricities. As has been found by others, those binaries with periodsof a few days have been circularized. However, those with periods up toabout 1000 or more days show reduced eccentricities that asymptoticallyapproach a mean value of 0.5 for the longest periods. For those binarieswith periods greater than 1000 days their distribution of eccentricitiesis flat from 0 to nearly 1, indicating that in the formation of binariesthere is no preferential eccentricity. The binaries with intermediateperiods (10-100 days) lack highly eccentric orbits.

Can Life Develop in the Expanded Habitable Zones around Red Giant Stars?
We present some new ideas about the possibility of life developingaround subgiant and red giant stars. Our study concerns the temporalevolution of the habitable zone. The distance between the star and thehabitable zone, as well as its width, increases with time as aconsequence of stellar evolution. The habitable zone moves outward afterthe star leaves the main sequence, sweeping a wider range of distancesfrom the star until the star reaches the tip of the asymptotic giantbranch. Currently there is no clear evidence as to when life actuallyformed on the Earth, but recent isotopic data suggest life existed atleast as early as 7×108 yr after the Earth was formed.Thus, if life could form and evolve over time intervals from5×108 to 109 yr, then there could behabitable planets with life around red giant stars. For a 1Msolar star at the first stages of its post-main-sequenceevolution, the temporal transit of the habitable zone is estimated to beseveral times 109 yr at 2 AU and around 108 yr at9 AU. Under these circumstances life could develop at distances in therange 2-9 AU in the environment of subgiant or giant stars, and in thefar distant future in the environment of our own solar system. After astar completes its first ascent along the red giant branch and the Heflash takes place, there is an additional stable period of quiescent Hecore burning during which there is another opportunity for life todevelop. For a 1 Msolar star there is an additional109 yr with a stable habitable zone in the region from 7 to22 AU. Space astronomy missions, such as proposed for the TerrestrialPlanet Finder (TPF) and Darwin, that focus on searches for signatures oflife on extrasolar planets, should also consider the environments ofsubgiants and red giant stars as potentially interesting sites forunderstanding the development of life. We performed a preliminaryevaluation of the difficulty of interferometric observations of planetsaround red giant stars compared to a main-sequence star environment. Weshow that pathfinder missions for TPF and Darwin, such as Eclipse andFKSI, have sufficient angular resolution and sensitivity to search forhabitable planets around some of the closest evolved stars of thesubgiant and red giant class.

Astrometric orbits of SB^9 stars
Hipparcos Intermediate Astrometric Data (IAD) have been used to deriveastrometric orbital elements for spectroscopic binaries from the newlyreleased Ninth Catalogue of Spectroscopic Binary Orbits(SB^9). This endeavour is justified by the fact that (i) theastrometric orbital motion is often difficult to detect without theprior knowledge of the spectroscopic orbital elements, and (ii) suchknowledge was not available at the time of the construction of theHipparcos Catalogue for the spectroscopic binaries which were recentlyadded to the SB^9 catalogue. Among the 1374 binaries fromSB^9 which have an HIP entry (excluding binaries with visualcompanions, or DMSA/C in the Double and Multiple Stars Annex), 282 havedetectable orbital astrometric motion (at the 5% significance level).Among those, only 70 have astrometric orbital elements that are reliablydetermined (according to specific statistical tests), and for the firsttime for 20 systems. This represents a 8.5% increase of the number ofastrometric systems with known orbital elements (The Double and MultipleSystems Annex contains 235 of those DMSA/O systems). The detection ofthe astrometric orbital motion when the Hipparcos IAD are supplementedby the spectroscopic orbital elements is close to 100% for binaries withonly one visible component, provided that the period is in the 50-1000 drange and the parallax is >5 mas. This result is an interestingtestbed to guide the choice of algorithms and statistical tests to beused in the search for astrometric binaries during the forthcoming ESAGaia mission. Finally, orbital inclinations provided by the presentanalysis have been used to derive several astrophysical quantities. Forinstance, 29 among the 70 systems with reliable astrometric orbitalelements involve main sequence stars for which the companion mass couldbe derived. Some interesting conclusions may be drawn from this new setof stellar masses, like the enigmatic nature of the companion to theHyades F dwarf HIP 20935. This system has a mass ratio of 0.98 but thecompanion remains elusive.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

Tidal Effects in Binaries of Various Periods
We found in the published literature the rotational velocities for 162B0-B9.5, 152 A0-A5, and 86 A6-F0 stars, all of luminosity classes V orIV, that are in spectroscopic or visual binaries with known orbitalelements. The data show that stars in binaries with periods of less thanabout 4 days have synchronized rotational and orbital motions. Stars inbinaries with periods of more than about 500 days have the samerotational velocities as single stars. However, the primaries inbinaries with periods of between 4 and 500 days have substantiallysmaller rotational velocities than single stars, implying that they havelost one-third to two-thirds of their angular momentum, presumablybecause of tidal interactions. The angular momentum losses increase withdecreasing binary separations or periods and increase with increasingage or decreasing mass.

Nearby stars of the Galactic disk and halo. III.
High-resolution spectroscopic observations of about 150 nearby stars orstar systems are presented and discussed. The study of these and another100 objects of the previous papers of this series implies that theGalaxy became reality 13 or 14 Gyr ago with the implementation of amassive, rotationally-supported population of thick-disk stars. The veryhigh star formation rate in that phase gave rise to a rapid metalenrichment and an expulsion of gas in supernovae-driven Galactic winds,but was followed by a star formation gap for no less than three billionyears at the Sun's galactocentric distance. In a second phase, then, thethin disk - our ``familiar Milky Way'' - came on stage. Nowadays ittraces the bright side of the Galaxy, but it is also embedded in a hugecoffin of dead thick-disk stars that account for a large amount ofbaryonic dark matter. As opposed to this, cold-dark-matter-dominatedcosmologies that suggest a more gradual hierarchical buildup throughmergers of minor structures, though popular, are a poor description forthe Milky Way Galaxy - and by inference many other spirals as well - if,as the sample implies, the fossil records of its long-lived stars do notstick to this paradigm. Apart from this general picture that emergeswith reference to the entire sample stars, a good deal of the presentwork is however also concerned with detailed discussions of manyindividual objects. Among the most interesting we mention the bluestraggler or merger candidates HD 165401 and HD 137763/HD 137778, thelikely accretion of a giant planet or brown dwarf on 59 Vir in itsrecent history, and HD 63433 that proves to be a young solar analog at\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspectednon-single from the Hipparcos astrometry, is directly detectable in thehigh-resolution spectroscopic tracings, whereas the visual binary \chiCet is instead at least triple, and presumably even quadruple. Withrespect to the nearby young stars a complete account of the Ursa MajorAssociation is presented, and we provide as well plain evidence foranother, the ``Hercules-Lyra Association'', the likely existence ofwhich was only realized in recent years. On account of its rotation,chemistry, and age we do confirm that the Sun is very typical among itsG-type neighbors; as to its kinematics, it appears however not unlikelythat the Sun's known low peculiar space velocity could indeed be thecause for the weak paleontological record of mass extinctions and majorimpact events on our parent planet during the most recent Galactic planepassage of the solar system. Although the significance of thiscorrelation certainly remains a matter of debate for years to come, wepoint in this context to the principal importance of the thick disk fora complete census with respect to the local surface and volumedensities. Other important effects that can be ascribed to this darkstellar population comprise (i) the observed plateau in the shape of theluminosity function of the local FGK stars, (ii) a small thoughsystematic effect on the basic solar motion, (iii) a reassessment of theterm ``asymmetrical drift velocity'' for the remainder (i.e. the thindisk) of the stellar objects, (iv) its ability to account for the bulkof the recently discovered high-velocity blue white dwarfs, (v) itsmajor contribution to the Sun's ˜220 km s-1 rotationalvelocity around the Galactic center, and (vi) the significant flatteningthat it imposes on the Milky Way's rotation curve. Finally we note ahigh multiplicity fraction in the small but volume-complete local sampleof stars of this ancient population. This in turn is highly suggestivefor a star formation scenario wherein the few existing single stellarobjects might only arise from either late mergers or the dynamicalejection of former triple or higher level star systems.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.
We have embarked on a project, under the aegis of the Nearby Stars(NStars)/Space Interferometry Mission Preparatory Science Program, toobtain spectra, spectral types, and, where feasible, basic physicalparameters for the 3600 dwarf and giant stars earlier than M0 within 40pc of the Sun. In this paper, we report on the results of this projectfor the first 664 stars in the northern hemisphere. These resultsinclude precise, homogeneous spectral types, basic physical parameters(including the effective temperature, surface gravity, and overallmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. Observed and derived data presented in this paper arealso available on the project's Web site.

Differential rotation in rapidly rotating F-stars
We obtained high quality spectra of 135 stars of spectral types F andlater and derived ``overall'' broadening functions in selectedwavelength regions utilizing a Least Squares Deconvolution (LSD)procedure. Precision values of the projected rotational velocity v \siniwere derived from the first zero of the Fourier transformed profiles andthe shapes of the profiles were analyzed for effects of differentialrotation. The broadening profiles of 70 stars rotating faster than v\sini = 45 km s-1 show no indications of multiplicity nor ofspottedness. In those profiles we used the ratio of the first two zerosof the Fourier transform q_2/q_1 to search for deviations from rigidrotation. In the vast majority the profiles were found to be consistentwith rigid rotation. Five stars were found to have flat profilesprobably due to cool polar caps, in three stars cuspy profiles werefound. Two out of those three cases may be due to extremely rapidrotation seen pole on, only in one case (v \sini = 52 km s-1)is solar-like differential rotation the most plausible explanation forthe observed profile. These results indicate that the strength ofdifferential rotation diminishes in stars rotating as rapidly as v \sini>~ 50 km s-1.Table A.1 is only available at the CDS via anonymous ftp tocdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/813Based on observations collected at the European Southern Observatory, LaSilla, 69.D-0015(B).

Lithium and rotation in F and G dwarfs and subgiants
Lithium abundances have been determined in 127 F and G Pop I stars basedon new measurements of the equivalent width of the lambda 6707 ÅLi I line from their high resolution CCD spectra. Distances and absolutemagnitudes of these stars have been obtained from the HipparcosCatalogue and their masses and ages derived, enabling us to investigatethe behaviour of lithium as a function of these parameters. Based ontheir location on the HR diagram superposed on theoretical evolutionarytracks, the sample of the stars has been chosen to ensure that they havemore or less completed their Li depletion on the main sequence. A largespread in the Li abundances is found at any given effective temperatureespecially in the already spun down late F and early G stars. Thisspread persists even if the ``Li-dip'' stars that have evolved from themain sequence temperature interval 6500-6800 K are excluded. Stars inthe mass range up to 2 M/Msun when divided into threemetallicity groups show a linear correlation between Li abundance andmass, albeit with a large dispersion around it which is not fullyaccounted for by age either. The large depletions and the observedspread in Li are in contrast to the predictions of the standard stellarmodel calculations and suggest that they are aided by non-standardprocesses depending upon variables besides mass, age and metallicity.The present study was undertaken to examine, in particular, the effectsof rotation on the depletion of Li. No one-to-one correlation is foundbetween the Li abundance and the present projected rotational velocity.Instead the observed abundances seem to be dictated by the rotationalhistory of the star. However, it is noted that even this interpretationis subject to the inherent limitation in the measurement of the observedLi EQW for large rotational velocities.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/409/251

Photometry of Mercury from SOHO/LASCO and Earth. The Phase Function from 2 to 170 deg.
CCD observations of Mercury were obtained with the large anglespectrometric coronograph (LASCO) on the solar and heliosphericobservatory spacecraft, near superior and inferior solar conjunctions.Whole disk photometry was extracted from the orange and blue filterimages and transformed to V magnitudes on the UBV system. The LASCO datawere combined with ground-based, V-filter photometry acquired at largerelongation angles. The resulting photometric phase function covers thegreatest span of angles to date and is the first wide-range function tobe obtained since the era of visual observation. We analyzed the datausing a polynomial fit and a Hapke function fit, and derived thefollowing photometric results. Mercury's fully lit brightness, adjustedto a distance of 1.0 AU from the Sun and observer, was found to beV=-0.694(+/-0.030), which is more luminous than previously measured. Thecorresponding geometric albedo is 0.142(+/-0.005). The phase integral is0.478(+/-0.005) and resulting spherical albedo is 0.068(+/-0.003). Theupper limit of a possible rotational brightness variation is about 0.05magnitude. Mercury's brightness surges by more than 40% between phaseangles 10 and 2°, while the illuminated fraction of the diskincreases by less than 1%. A set of coefficients for Hapke's functionthat fit most of the phase curve includes h=0.065+/-0.002 indicatingthat Mercury and the Moon have similar regolith compaction states andparticle size distributions, and θ-bar=16°+/-1° implyinga macroscopically smoother surface than the Moon. However, we foundother solutions that fit the observations nearly as well withsignificantly smaller and larger values of h, and with values ofθ-bar around 25°. The wide range for θ-bar is due tothe inability of the model to fit the photometry obtained at large phaseangles. .

Rotational velocities of A-type stars in the northern hemisphere. II. Measurement of v sin i
This work is the second part of the set of measurements of v sin i forA-type stars, begun by Royer et al. (\cite{Ror_02a}). Spectra of 249 B8to F2-type stars brighter than V=7 have been collected at Observatoirede Haute-Provence (OHP). Fourier transforms of several line profiles inthe range 4200-4600 Å are used to derive v sin i from thefrequency of the first zero. Statistical analysis of the sampleindicates that measurement error mainly depends on v sin i and thisrelative error of the rotational velocity is found to be about 5% onaverage. The systematic shift with respect to standard values fromSlettebak et al. (\cite{Slk_75}), previously found in the first paper,is here confirmed. Comparisons with data from the literature agree withour findings: v sin i values from Slettebak et al. are underestimatedand the relation between both scales follows a linear law ensuremath vsin inew = 1.03 v sin iold+7.7. Finally, thesedata are combined with those from the previous paper (Royer et al.\cite{Ror_02a}), together with the catalogue of Abt & Morrell(\cite{AbtMol95}). The resulting sample includes some 2150 stars withhomogenized rotational velocities. Based on observations made atObservatoire de Haute Provence (CNRS), France. Tables \ref{results} and\ref{merging} are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/897

Statistics of spectroscopic sub-systems in visual multiple stars
A large sample of visual multiples of spectral types F5-M has beensurveyed for the presence of spectroscopic sub-systems. Some 4200 radialvelocities of 574 components were measured in 1994-2000 with thecorrelation radial velocity meter. A total of 46 new spectroscopicorbits were computed for this sample. Physical relations are establishedfor most of the visual systems and several optical components areidentified as well. The period distribution of sub-systems has a maximumat periods from 2 to 7 days, likely explained by a combination of tidaldissipation with triple-star dynamics. The fraction of spectroscopicsub-systems among the dwarf components of close visual binaries withknown orbits is similar to that of field dwarfs, from 11% to 18% percomponent. Sub-systems are more frequent among the components of widevisual binaries and among wide tertiary components to the known visualor spectroscopic binaries - 20% and 30%, respectively. In triple systemswith both outer (visual) and inner (spectroscopic) orbits known, we findan anti-correlation between the periods of inner sub-systems and theeccentricities of outer orbits which must be related to dynamicalstability constraints. Tables 1, 2, and 6 are only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/382/118

The long-period companions of multiple stars tend to have moderate eccentricities
We examined the statistics of an angle gamma between the radius vectorof a visual companion of a multiple star and the vector of its apparentrelative motion in the system. Its distribution f(gamma ) is related tothe orbital eccentricity distribution in the investigated sample. Wefound that for the wide physical subsystems of the 174 objects from theMultiple Star Catalogue f(gamma ) is bell-shaped. The Monte-Carlosimulations have shown that our f(gamma ) corresponds to the populationof the moderate-eccentricity orbits and is not compatible with thelinear distribution f(e)=2e which follows from stellar dynamics andseems to hold for wide binaries. This points to the absence of highlyelongated orbits among the outer subsystems of multiple stars. Theconstraint of dynamical stability of triple systems is not sufficient toexplain the ``rounded-off'' outer orbits; instead, we speculate that itcan result from the angular momentum exchange in multiple systems duringtheir early evolution.

Stellar encounters with the solar system
We continue our search, based on Hipparcos data, for stars which haveencountered or will encounter the solar system(García-Sánchez et al. \cite{Garcia}). Hipparcos parallaxand proper motion data are combined with ground-based radial velocitymeasurements to obtain the trajectories of stars relative to the solarsystem. We have integrated all trajectories using three different modelsof the galactic potential: a local potential model, a global potentialmodel, and a perturbative potential model. The agreement between themodels is generally very good. The time period over which our search forclose passages is valid is about +/-10 Myr. Based on the Hipparcos data,we find a frequency of stellar encounters within one parsec of the Sunof 2.3 +/- 0.2 per Myr. However, we also find that the Hipparcos data isobservationally incomplete. By comparing the Hipparcos observations withthe stellar luminosity function for star systems within 50 pc of theSun, we estimate that only about one-fifth of the stars or star systemswere detected by Hipparcos. Correcting for this incompleteness, weobtain a value of 11.7 +/- 1.3 stellar encounters per Myr within one pcof the Sun. We examine the ability of two future missions, FAME andGAIA, to extend the search for past and future stellar encounters withthe Sun.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Research Note Hipparcos photometry: The least variable stars
The data known as the Hipparcos Photometry obtained with the Hipparcossatellite have been investigated to find those stars which are leastvariable. Such stars are excellent candidates to serve as standards forphotometric systems. Their spectral types suggest in which parts of theHR diagrams stars are most constant. In some cases these values stronglyindicate that previous ground based studies claiming photometricvariability are incorrect or that the level of stellar activity haschanged. Table 2 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/367/297

The proper motions of fundamental stars. I. 1535 stars from the Basic FK5
A direct combination of the positions given in the HIPPARCOS cataloguewith astrometric ground-based catalogues having epochs later than 1939allows us to obtain new proper motions for the 1535 stars of the BasicFK5. The results are presented as the catalogue Proper Motions ofFundamental Stars (PMFS), Part I. The median precision of the propermotions is 0.5 mas/year for mu alpha cos delta and 0.7mas/year for mu delta . The non-linear motions of thephotocentres of a few hundred astrometric binaries are separated intotheir linear and elliptic motions. Since the PMFS proper motions do notinclude the information given by the proper motions from othercatalogues (HIPPARCOS, FK5, FK6, etc.) this catalogue can be used as anindependent source of the proper motions of the fundamental stars.Catalogue (Table 3) is only available at the CDS via anonymous ftp tocdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strastg.fr/cgi-bin/qcat?J/A+A/365/222

No molecular gas around nearby solar-type stars
Molecular gas around main-sequence stars is thought to disperse in onlya few million years, constraining the time-scale for giant planets toform. However, this hypothesis has never been fully tested, as many ofthe search targets have been A-type stars, where the primary gas tracer,carbon monoxide, is readily photodissociated. A survey has been made of14 nearby F and G stars with known circumstellar dust - no CO isdetected, and a mean upper limit for all the stars implies less than0.015 Uranus masses of H2. Since these solar-like stars havenegligible dissociating UV radiation, this indicates that the lack ofgas detections is not an observational bias, and also that theories withformation of the outer gas giants at late times are not supported.

Photometric Measurements of the Fields of More than 700 Nearby Stars
In preparation for optical/IR interferometric searches for substellarcompanions of nearby stars, we undertook to characterize the fields ofall nearby stars visible from the Northern Hemisphere to determinesuitable companions for interferometric phase referencing. Because theKeck Interferometer in particular will be able to phase-reference oncompanions within the isoplanatic patch (30") to about 17th magnitude atK, we took images at V, r, and i that were deep enough to determine iffield stars were present to this magnitude around nearby stars using aspot-coated CCD. We report on 733 fields containing 10,629 measurementsin up to three filters (Gunn i, r and Johnson V) of nearby stars down toabout 13th magnitude at V.

Stellar Encounters with the Oort Cloud Based on HIPPARCOS Data
We have combined Hipparcos proper-motion and parallax data for nearbystars with ground-based radial velocity measurements to find stars thatmay have passed (or will pass) close enough to the Sun to perturb theOort cloud. Close stellar encounters could deflect large numbers ofcomets into the inner solar system, which would increase the impacthazard at Earth. We find that the rate of close approaches by starsystems (single or multiple stars) within a distance D (in parsecs) fromthe Sun is given by N= 3.5D^2.12 Myr^-1, less than the number predictedby a simple stellar dynamics model. However, this value is clearly alower limit because of observational incompleteness in the Hipparcosdata set. One star, Gliese 710, is estimated to have a closest approachof less than 0.4 pc 1.4 Myr in the future, and several stars come within1 pc during a +/-10 Myr interval. We have performed dynamicalsimulations that show that none of the passing stars perturb the Oortcloud sufficiently to create a substantial increase in the long-periodcomet flux at Earth's orbit.

Binary star speckle measurements during 1992-1997 from the SAO 6-m and 1-m telescopes in Zelenchuk
We present the results of speckle interferometric measurements of binarystars made with the television photon-counting camera at the 6-m BigAzimuthal Telescope (BTA) and 1-m telescope of the Special AstrophysicalObservatory (SAO) between August 1992 and May 1997. The data contain 89observations of 62 star systems on the large telescope and 21 on thesmaller one. For the 6-m aperture 18 systems remained unresolved. Themeasured angular separation ranged from 39 mas, two times above the BTAdiffraction limit, to 1593 mas.

The ROSAT all-sky survey catalogue of the nearby stars
We present X-ray data for all entries of the Third Catalogue of NearbyStars \cite[(Gliese & Jahreiss 1991)]{gli91} that have been detectedas X-ray sources in the ROSAT all-sky survey. The catalogue contains1252 entries yielding an average detection rate of 32.9 percent. Inaddition to count rates, source detection parameters, hardness ratios,and X-ray fluxes we also list X-ray luminosities derived from Hipparcosparallaxes. Catalogue also available at CDS via anonymous ftp tocdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/Abstract.html

CCD and micrometric observations of visual double stars
Relative positions and separations for 65 visual binaries are given. CCDframes were taken at the 1-m coudetelescope and micrometric observationswere carried out at the 65-cm refractor, both at the Venezuelan NationalObservatory. The visual double stars observed were selected from theRamon Maria Aller Observatory program list. In addition, we alsoobserved several long period double stars with poorly determined orbitalelements.

Measurements of double stars 1993.67 - 1998.13
624 Micrometer Measurements of 224 pairs with a 32.5 cm Cassegrain, 719Measurements of 310 double stars with a 360 mm Newtonian are given.Tables 1 to 4 are available in electronic form only at the CDS130.79.128.5 or via http://cdsweb.u-strasbg.fr/Abstract.html

The ROSAT all-sky survey catalogue of optically bright main-sequence stars and subgiant stars
We present X-ray data for all main-sequence and subgiant stars ofspectral types A, F, G, and K and luminosity classes IV and V listed inthe Bright Star Catalogue that have been detected as X-ray sources inthe ROSAT all-sky survey; several stars without luminosity class arealso included. The catalogue contains 980 entries yielding an averagedetection rate of 32 percent. In addition to count rates, sourcedetection parameters, hardness ratios, and X-ray fluxes we also listX-ray luminosities derived from Hipparcos parallaxes. The catalogue isalso available in electronic form via anonymous ftp tocdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The Tokyo PMC catalog 90-93: Catalog of positions of 6649 stars observed in 1990 through 1993 with Tokyo photoelectric meridian circle
The sixth annual catalog of the Tokyo Photoelectric Meridian Circle(PMC) is presented for 6649 stars which were observed at least two timesin January 1990 through March 1993. The mean positions of the starsobserved are given in the catalog at the corresponding mean epochs ofobservations of individual stars. The coordinates of the catalog arebased on the FK5 system, and referred to the equinox and equator ofJ2000.0. The mean local deviations of the observed positions from theFK5 catalog positions are constructed for the basic FK5 stars to comparewith those of the Tokyo PMC Catalog 89 and preliminary Hipparcos resultsof H30.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:07h20m07.40s
Apparent magnitude:3.53
Distance:18.034 parsecs
Proper motion RA:0
Proper motion Dec:0
B-T magnitude:3.921
V-T magnitude:3.559

Catalogs and designations:
Proper NamesWasat
Bayerδ Gem
Flamsteed55 Gem
HD 1989HD 56986
TYCHO-2 2000TYC 1359-2672-1
USNO-A2.0USNO-A2 1050-05035199
BSC 1991HR 2777
HIPHIP 35550

→ Request more catalogs and designations from VizieR