Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 52556



Upload your image

DSS Images   Other Images

Related articles

Precise radial velocities of giant stars. I. Stable stars
Context: .Future astrometric missions such as SIM PlanetQuest need verystable reference stars. K giants have large luminosities, which placethem at large distances and thus the jitter of their photocenters bycompanions is relatively small. Therefore K giants would be best suitedas references. To confirm this observationally a radial velocity surveyis performed to quantify the level of intrinsic variability in Kgiants. Aims: .From this radial velocity survey we present 34 Kgiants with an observed standard deviation of the radial velocity ofless than 20 m/s. These stars are considered "stable" and can be used asradial velocity standards. Methods: .The radial velocity surveycontains 179 K giants. All K giants have a declination between -30°and +65° and visual magnitude of 3{-}6 mag. The CoudéAuxiliary Telescope (CAT) at UCO/Lick Observatory is used to obtainradial velocities with an accuracy of 5{-}8 m/s. The number of epochsfor the 34 stable stars ranges from 11 to 28 with a total timespan ofthe observations between 1800 and a little over 2200 days. Results: .The observational results of the 34 "stable" stars are showntogether with a discussion about their position in the MV vs.B-V diagram and some conclusions concerning the radial velocityvariability of K giants. These results are in agreement with thetheoretical predictions. K giants in a certain range of theMV vs. B-V diagram are suitable reference stars.

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

A Strategy for Identifying the Grid Stars for the Space Interferometry Mission
We present a strategy to identify several thousand stars that areastrometrically stable at the microarcsecond level for use in the SpaceInterferometry Mission (SIM) astrometric grid. The requirements on thegrid stars make this a rather challenging task. Taking a variety ofconsiderations into account, we argue for K giants as the best type ofstars for the grid, mainly because they can be located at much largerdistances than any other type of star owing to their intrinsicbrightness. We show that it is possible to identify suitable candidategrid K giants from existing astrometric catalogs. However, double starshave to be eliminated from these candidate grid samples, since theygenerally produce much larger astrometric jitter than tolerable for thegrid. The most efficient way to achieve this is probably by means of aradial velocity survey. To demonstrate the feasibility of this approach,we repeatedly measured the radial velocities for a preselected sample of86 nearby Hipparcos K giants with precisions of 5-8 m s-1.The distribution of the intrinsic radial velocity variations for thebona fide single K giants shows a maximum around 20 m s-1,which is small enough not to severely affect the identification ofstellar companions around other K giants. We use the results of ourobservations as input parameters for Monte Carlo simulations on thepossible design of a radial velocity survey of all grid stars. Ourfavored scenario would result in a grid which consists to 68% of truesingle stars and to 32% of double or multiple stars with periods mostlylarger than 200 years, but only 3.6% of all grid stars would displayastrometric jitter larger than 1 μas. This contamination level isprobably tolerable.

The photoelectric astrolabe catalogue of Yunnan Observatory (YPAC).
The positions of 53 FK5, 70 FK5 Extension and 486 GC stars are given forthe equator and equinox J2000.0 and for the mean observation epoch ofeach star. They are determined with the photoelectric astrolabe ofYunnan Observatory. The internal mean errors in right ascension anddeclination are +/- 0.046" and +/- 0.059", respectively. The meanobservation epoch is 1989.51.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Photometric surveys of suspected small-amplitude red variables. 3: an AAVSO photometric photometry survey
We have carried out a survey of the photometric (V) variability of 61'known' or suspected small-amplitude red variables, mostly M giants.Approximately two-thirds appear to be variable; several suspectedvariable comparison stars have also been identified. The incidence andaverage amplitude of variability increase rapidly from spectral type M0III to M6 III.

Evolved GK stars near the Sun. 2: The young disk population
From a sample of nearly 2000 GK giants a group of young disk stars withwell determined space motions has been selected. The zero point of theluminosity calibrations, both from the ultraviolet flux (modifiedStroemgren system) and that in the region of 4200 to 4900 A (DDOsystem), show a discontinuity of about a half magnitude at the border ofthe young disk and old disk domains. The population separation is basedon the space velocity components, which are also an age discriminant,with the population interface near 2 x 109 yr, based onmodels with convective overshoot at the core. This age corresponds togiant masses near 1.7 solar mass, near the critical mass separating theyoung stars that do not burn helium in degenerate cores from older starsthat do. Ten percent of both populations show CN anomalies in that thederived value of P(Fe/H) from CN (Cm) and fromFe(M1) differ by more than 0.1 dex and the weak and strong CNstars occur equally in the old disk but the weak CN stars predominate inthe young disk. Peculiar stars, where flux distortions affect theluminosity calibrations, are of the CH+(Ba II) and CH-(weak G band)variety and represent less than 1% of the stars in both populations. Theyoung disk giants are restricted to ages greater than about109 yr, because younger stars are bright giants orsupergiants (luminosity class 2 or 1), and younger than about 2 x109 yr, because the old disk-young disk boundary occurs near1.7 solar mass. The distribution of heavy element abundances, P(Fe/H),for young disk giants is both more limited in range (+/- 0.4 dex) and isskewed toward higher abundances, compared with the nearly normaldistribution for old disk giants. The distribution of (U,V) velocityvectors gives (U,V,W) and their dispersions = (+17.6 +/- 18.4, -14.8 +/-8.4, -6.9 +/- 13.0) and (+3.6 +/- 38.4, -20.7 +/- 27.5, -6.7 +/-17.3)km/s for young and old disk giants, respectively.

UBV photometry of stars whose positions are accurately known. VI
Results are presented from UBV photometric observations of 1000 stars ofthe Bright Star Catalogue and the faint extension of the FK5.Observations were carried out between July 1987 and December 1990 withthe 40-cm Cassegrain telescope of the Kvistaberg Observatory.

Large and kinematically unbiased samples of G- and K-type stars. IV - Evolved stars of the old disk population
Modified Stromgren and (R,I) photometry, along with DDO and Genevaphotometry, are presented for a complete sample of evolved old-disk Gand K giants in the Bright Star Catalogue. Stars with ages of between1.5 x 10 to the 9th and 10 to the 10th yr are found to have anear-normal distribution of heavy element abundances, centered on anFe/H abundance ratio of -0.1 dex. The old disk clusters NGC 3680 and IC4651 contain red-straggler young-disk giants that are probablycontemporaries of the blue stragglers in the clusters.

Large and kinematically unbiased samples of G- and K-type stars. II - Observations of evolved stars in the Bright Star sample. III - Evolved young disk stars in the Bright Star sample
Four color and RI observations were obtained for a large sample ofG-type and K-type stars in the Bright Star Catalogue. Data are firstpresented for 110 evolved stars. Photometry of evolved young diskpopulation stars have then been calibrated for luminosity, reddening,and metallicity on the basis of results for members of the Hyades andSirius superclusters. New DDO results are given for 120 stars.

Catalog of Indidual Radial Velocities, 0h-12h, Measured by Astronomers of the Mount Wilson Observatory
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970ApJS...19..387A&db_key=AST

Magnitudes and colors for 833 Northern and Southern stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1955AJ.....60...65E&db_key=AST

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:07h02m17.40s
Apparent magnitude:5.74
Distance:197.628 parsecs
Proper motion RA:4.9
Proper motion Dec:-24.8
B-T magnitude:7.243
V-T magnitude:5.899

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 52556
TYCHO-2 2000TYC 1344-336-1
USNO-A2.0USNO-A2 1050-04702815
BSC 1991HR 2632
HIPHIP 33914

→ Request more catalogs and designations from VizieR