Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 6383



Upload your image

DSS Images   Other Images

Related articles

Nonradial Oscillations on a Pre-Main-Sequence Star
We show that the modes observed on the pulsating pre-main-sequence (PMS)star NGC 6383 170 can be interpreted as a combination of radial andnonradial p-modes. Using a dense grid of PMS models and oscillationspectra, we have identified models that match the observed oscillationspectrum within 1 σ of the frequency uncertainties and areconsistent with the star's position in the H-R diagram.

Investigating star formation in the young open cluster NGC 6383
Context: By studying young open clusters, the mechanisms important forstar formation over several Myr can be examined. For example, accretionrate as a function of rotational velocity can be investigated.Similarly, sequential star formation triggered by massive stars withhigh mass-loss rates can be studied in detail. Aims: We identifiedand characterized probable members of NGC 6383, as well as determinedcluster parameters. Methods: New Strömgren uvby CCD photometry,obtained by us, is presented. This new data, together with Johnson UBVand 2MASS data in the NIR, was used to investigate characteristics ofpre- as well as zero age main sequence cluster members. Results: Wepresent Strömgren uvby CCD photometry for 272 stars in the field ofNGC 6383 and derive its reddening, E(b-y) = 0.21(4) mag, as well asdistance, d = 1.7(3) kpc from the Sun. Several stars with NIR excess andobjects in the domain of the classical Herbig Ae/Be and T Tauri starswere detected. Two previously known variables were identified asrapidly-rotating PMS stars. The field population is clearly separatedfrom the probable members in the color-magnitude diagram. Conclusions:. NGC 6383 is a young open cluster, with an age of less than 4 Myr,undergoing continuous star formation. True pre-main sequence membersmight be found down to absolute magnitudes of +6 mag, with a variety ofrotational velocities and stellar activities.Based on observations at ESO-La Silla (Proposal 073.C-0144). Data tableis only available in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/462/157

Orbital period investigations of two short-period early-type overcontact binaries BH Cen and V701 Sco in two extremely young galactic clusters IC 2944 and NGC 6383
Both V701 Sco and BH Cen are two early-type short-period overcontactsystems (P = 0.d762 and P = 0.d792, respectively).V701 Sco is a member of the young galactic cluster NGC 6383, while BHCen is a component of a younger galactic cluster IC 2944 where starformation is in process. They provide good opportunity to understand theformation and evolution of binary stars. In the present paper, orbitalperiod changes of the two binaries are investigated. It is discoveredthat the orbital period of BH Cen shows a long-term increase with a rateof dP/dt = +1.70(±0.39) × 10‑7 days/yearwhile it undergoes a cyclic oscillation with a period of 44.6 years andan amplitude of A3 = 0.d0216. For V701 Sco, itsO-C curve reveals a periodic change with a period of 41.2 years andamplitude of A3 = 0.d0158. The mass ratio of BHCen is 0.84, but V701 Sco contains twin B1-1.5V type stars with a massratio of unit. The continuous period increase of BH Cen is caused by themass transfer from the less massive component to the more massive one ata rate of dM2/dt = 3.5 × 10‑6days/year. The cyclic period changes of both systems can be plausiblyexplained as the results of light-travel time effects suggesting thatthey are triple systems. The astrophysical parameters of the unseentertiary components in the two systems have been determined. We thinkthat the invisible tertiary components in both binaries played animportant role in the formations and evolutions of the overcontactconfigurations by bringing angular momentum out from the centralsystems. For BH Cen, this process created the initial short period andwill support its evolution into an overcontact configuration via a CaseA mass transfer within the life time of the extremely young cluster IC2944. For V701 Sco, two identical zero-age main-sequence components inan overcontact configuration suggest that it may have been formed byfission, possibly by the fission of the third body. The fact that nolong-term continuous period variations were found for V701 Sco maysuggest that an overcontact binary with the mass ratio of unity can bein an equilibrium revealing that the original configuration of thebinary was overcontact as is its present state. It has been reportedthat faint stars in the two extremely young clusters are relativelyscare. From the present study, it is shown that faint stars in youngclusters are usually formed as companions of OB stars (includingbinaries). It is very difficult to detect them because of their lowluminosity when compared with the more luminous OB stars.

The XMM-Newton view of Plaskett's star and its surroundings
XMM-Newton data of Plaskett's star (HD 47129) are used in order toanalyse its X-ray spectrum and variability and hence to derive furtherconstraints on the wind interaction in this early-type binary (O6 I +O7.5 I) system.Conventional models fail to provide a consistent fit of the EuropeanPhoton Imaging Camera (EPIC) and Reflexion Grating Spectrometer (RGS)spectra. The lines seen in the RGS spectrum have a temperature ofmaximum emissivity between 0.18 and 1.4 keV. The EPIC and RGS spectraare best fitted by a non-equilibrium model consisting of abremsstrahlung continuum at 2.2 +/- 0.1 keV and a number of independentemission lines. Our tests also suggest that an overabundance in nitrogenby a factor of ~6 might be indicated to best represent the RGS spectrum.On the other hand, a short-term variability study of the light curves ofthe system indicates that the X-ray flux of Plaskett's star did notdisplay any significant variability during our observation. This resultholds for all time-scales investigated here (from a few minutes to aboutone hour). Combining our XMM-Newton data with ROSAT archivalobservations, we find, however, a significant variability on the orbitaltime-scale. If this behaviour is indeed phase locked, it suggests aminimum in the X-ray flux when the primary star is in front. This mightbe attributed to an occultation of the colliding wind region by the bodyof the primary.Finally, 71 other X-ray sources have been detected in the field aroundPlaskett's star and most of them have a near-infrared (near-IR)counterpart with colours that are consistent with those of slightlyreddened main-sequence objects. Actually, a sizeable fraction of theX-ray sources in the EPIC images could be either foreground orbackground sources with no direct connection to HD 47129.Based on observations obtained with XMM-Newton, an ESA science missionwith instruments and contributions directly funded by ESA Member Statesand NASA.E-mail: linder@astro.ulg.ac.be (NL), rauw@astro.ulg.ac.be (GR) ‡Research Associate FNRS, Belgium.

An XMM-Newton view of the young open cluster NGC 6231. I. The catalogue
This paper is the first of a series dedicated to the X-ray properties ofthe young open cluster NGC 6231. Our data set relies on an XMM-Newtoncampaign of a nominal duration of 180 ks and reveals that NGC 6231 isvery rich in the X-ray domain too. Indeed, 610 X-ray sources aredetected in the present field of view, centered on the cluster core. Thelimiting sensitivity of our survey is approximately 6 ×10-15 erg cm-2 s-1 but clearly dependson the location in the field of view and on the source spectrum. Usingdifferent existing catalogues, over 85% of the X-ray sources could beassociated with at least one optical and/or infrared counterpart withina limited cross-correlation radius of 3´´ at maximum. Thesurface density distribution of the X-ray sources presents a slight N-Selongation. Once corrected for the spatial sensitivity variation of theEPIC instruments, the radial profile of the source surface density iswell described by a King profile with a central density of about 8sources per arcmin2 and a core radius close to 3.1 arcmin.The distribution of the X-ray sources seems closely related to theoptical source distribution. The expected number of foreground andbackground sources should represent about 9% of the detected sources,thus strongly suggesting that most of the observed X-ray emitters arephysically belonging to NGC 6231. Finally, beside a few bright but softobjects - corresponding to the early-type stars of the cluster - most ofthe sources are relatively faint (~5 × 10-15 ergcm-2 s-1) with an energy distribution peakedaround 1.0-2.0 keV.

Astrophysics in 2005
We bring you, as usual, the Sun and Moon and stars, plus some galaxiesand a new section on astrobiology. Some highlights are short (the newlyidentified class of gamma-ray bursts, and the Deep Impact on Comet9P/Tempel 1), some long (the age of the universe, which will be found tohave the Earth at its center), and a few metonymic, for instance theterm ``down-sizing'' to describe the evolution of star formation rateswith redshift.

Kinematics of the Open Cluster System in the Galaxy
Absolute proper motions and radial velocities of 202 open clusters inthe solar neighborhood, which can be used as tracers of the Galacticdisk, are used to investigate the kinematics of the Galaxy in the solarvicinity, including the mean heliocentric velocity components(u1,u2,u3) of the open cluster system,the characteristic velocity dispersions(σ1,σ2,σ3), Oortconstants (A,B) and the large-scale radial motion parameters (C,D) ofthe Galaxy. The results derived from the observational data of propermotions and radial velocities of a subgroup of 117 thin disk young openclusters by means of a maximum likelihood algorithm are:(u1,u2,u3) =(-16.1+/-1.0,-7.9+/-1.4,-10.4+/-1.5) km s-1,(σ1,σ2,σ3) =(17.0+/-0.7,12.2+/-0.9,8.0+/-1.3) km s-1,(A,B) =(14.8+/-1.0,-13.0+/-2.7) km s-1 kpc-1, and (C,D) =(1.5+/-0.7,-1.2+/-1.5) km s-1 k pc-1. A discussionon the results and comparisons with what was obtained by other authorsis given.

Deep X-ray survey of the young open cluster NGC 2516 with XMM-Newton
Aims.We report a deep X-ray survey of the young (~140 Myr), rich opencluster NGC 2516 obtained with the EPIC camera on board the XMM-Newtonsatellite. Methods: .By combining data from six observations, ahigh sensitivity, greater than a factor of 5 with respect to recentChandra observations, has been achieved. Kaplan-Meier estimators of thecumulative X-ray luminosity distribution are built, statisticallycorrected for non members contaminants and compared to those of thenearly coeval Pleiades. The EPIC spectra of the X-ray brightest starsare fitted using optically thin model plasma with one or two thermalcomponents. Results: .We detected 431 X-ray sources and 234 ofthem have as optical counterparts cluster stars spanning the entire NGC2516 Main Sequence. On the basis of X-ray emission and opticalphotometry, we indicate 20 new candidate members of the cluster; at thesame time we find 49 X-ray sources without known optical or infraredcounterpart. The X-ray luminosities of cluster stars span the range logLX (erg s-1) = 28.4-30.8. The representativetemperatures span the 0.3-0.6 keV (3.5-8 MK) range for the coolcomponent and 1.0-2.0 keV (12-23 MK) for the hot one; similar values arefound in other young open clusters like the Pleiades, IC 2391, andBlanco 1. While no significant differences are found in X-ray spectra,NGC 2516 solar type stars are definitely less luminous in X-rays thanthe nearly coeval Pleiades. The comparison with a previous ROSAT surveyreveals the lack of variability amplitudes larger than a factor of 2 insolar type stars in a ˜ 11 yr time scale of the cluster and thusactivity cycles like in the Sun are probably absent or have a differentperiod and amplitude in young stars.

Searching for links between magnetic fields and stellar evolution. I. A survey of magnetic fields in open cluster A- and B-type stars with FORS1
Context: .About 5% of upper main sequence stars are permeated by astrong magnetic field, the origin of which is still matter of debate. Aims: . With this work we provide observational material to studyhow magnetic fields change with the evolution of stars on the mainsequence, and to constrain theory explaining the presence of magneticfields in A and B-type stars. Methods: . Using FORS1 inspectropolarimetric mode at the ESO VLT, we have carried out a survey ofmagnetic fields in early-type stars belonging to open clusters andassociations of various ages. Results: . We have measured themagnetic field of 235 early-type stars with a typical uncertainty of˜ 100 G. In our sample, 97 stars are Ap or Bp stars. For thesetargets, the median error bar of our field measurements was ˜ 80 G.A field has been detected in about 41 of these stars, 37 of which werenot previously known as magnetic stars. For the 138 normal A and B-typestars, the median error bar was 136 G, and no field was detected in anyof them.

Proper motion determination of open clusters based on the UCAC2 catalogue
We present the kinematics of hundreds of open clusters, based on theUCAC2 Catalogue positions and proper motions. Membership probabilitieswere obtained for the stars in the cluster fields by applying astatistical method uses stellar proper motions. All open clusters withknown distance were investigated, and for 75 clusters this is the firstdetermination of the mean proper motion. The results, including the DSSimages of the cluster's fields with the kinematic members marked, areincorporated in the Open Clusters Catalogue supported on line by ourgroup.

Astrophysical parameters of Galactic open clusters
We present a catalogue of astrophysical data for 520 Galactic openclusters. These are the clusters for which at least three most probablemembers (18 on average) could be identified in the ASCC-2.5, a catalogueof stars based on the Tycho-2 observations from the Hipparcos mission.We applied homogeneous methods and algorithms to determine angular sizesof cluster cores and coronae, heliocentric distances, mean propermotions, mean radial velocities, and ages. For the first time we derivedistances for 200 clusters, radial velocities for 94 clusters, and agesof 196 clusters. This homogeneous new parameter set is compared withearlier determinations, where we find, in particular, that the angularsizes were systematically underestimated in the literature.

An XMM-Newton observation of the multiple system HD 167971 (O5-8V + O5-8V + (O8I)) and the young open cluster NGC 6604
We discuss the results of two XMM-Newton observations of the opencluster NGC 6604 obtained in April and September 2002. We concentratemainly on the multiple system HD 167971 (O5-8V + O5-8V + (O8I)). Thesoft part of the EPIC spectrum of this system is thermal with typicaltemperatures of about 2 × 106 to 9 ×106 K. The nature (thermal vs. non-thermal) of the hard partof the spectrum is not unambiguously revealed by our data. If theemission is thermal, the high temperature of the plasma (~2.3 ×107 to 4.6 × 107 K) would be typical of whatshould be expected from a wind-wind interaction zone within a longperiod binary system. This emission could arise from an interactionbetween the combined winds of the O5-8V + O5-8V close binary system andthat of the more distant O8I companion. Assuming instead that the hardpart of the spectrum is non-thermal, the photon index would be rathersteep (~3). Moreover, a marginal variability between our two XMM-Newtonpointings could be attributed to an eclipse of the O5-8V + O5-8V system.The overall X-ray luminosity points to a significant X-ray luminosityexcess of about a factor 4 possibly due to colliding winds. ConsideringHD 167971 along with several recent X-ray and radio observations, wepropose that the simultaneous observation of non-thermal radiation inthe X-ray (below 10.0 keV) and radio domains appears rather unlikely.Our investigation of our XMM-Newton data of NGC 6604 reveals a rathersparse distribution of X-ray emitters. Including the two brightnon-thermal radio emitters HD 168112 and HD 167971, we present a list of31 X-ray sources along with the results of the cross-correlation withoptical and infrared catalogues. A more complete spectral analysis ispresented for the brightest X-ray sources. Some of the members of NGC6604 present some characteristics suggesting they may be pre-mainsequence star candidates.

The origin of massive O-type field stars: II. Field O stars as runaways
In two papers we try to confirm that all Galactic high-mass stars areformed in a cluster environment, by excluding that O-type stars found inthe Galactic field actually formed there. In de Wit et al. (2004) wepresented deep K-band imaging of 5 arcmin fields centred on 43 massiveO-type field stars that revealed that the large majority of theseobjects are single objects. In this contribution we explore thepossibility that the field O stars are dynamically ejected from youngclusters, by investigating their peculiar space velocity distribution,their distance from the Galactic plane, and their spatial vicinity toknown young stellar clusters. We (re-)identify 22 field O-type stars ascandidate runaway OB-stars. The statistics show that 4 ± 2% ofall O-type stars with V<8m can be considered as formedoutside a cluster environment. Most are spectroscopically singleobjects, some are visual binaries. The derived percentage for O-typestars that form isolated in the field based on our statistical analysesis in agreement with what is expected from calculations adopting auniversal cluster richness distribution with power index of β= 1.7,assuming that the cluster richness distribution is continuous down tothe smallest clusters containing one single star.

Search for pulsating pre-main-sequence stars in NGC6383
A search for pulsating pre-main-sequence (PMS) stars was performed inthe young open cluster NGC 6383 using CCD time-series photometry inJohnson B and V filters. With an age of only ~1.7Myr all cluster memberslater than spectral type A0 have not reached the ZAMS yet, hence beingideal candidates for investigating PMS pulsation among A- and F-typestars. In total 286 stars have been analysed using classical Fouriertechniques. From about a dozen stars within the boundaries of theclassical instability strip, two stars were found to pulsate: NGC 6383#170, with five frequencies simultaneously, and NGC 6383 #198, with asingle frequency. In addition, NGC 6383 #152 is a suspected PMS variablestar, but our data remain inconclusive. Linear, non-adiabatic modelsassuming PMS evolutionary phase and purely radial pulsation werecalculated for the two new PMS pulsators. NGC 6383 #170 appears topulsate radially in third and fifth overtones, while the other threefrequencies seem to be of non-radial nature. NGC 6383 #198 pulsatesmonoperiodically, most probably in the third radial overtone. Magnitudesand B-V colours were available in the literature for only one third ofall stars and we used them for calibrating the remaining.

Pulsating pre-Main sequence stars in young open clusters
New pulsating pre-main sequence (PMS) stars have been discovered in theyoung open clusters IC 4996 and NGC 6383 using CCD time seriesphotometry in Johnson B and V filters. As the cluster ages are bothsmaller than 10 million years, all members later than spectral type A0are still contracting towards the ZAMS, hence providing ideal candidatesfor searches of pulsation. A dozen stars in NGC 6383 and 35 stars in IC4996 lie within the boundaries of the classical instability region inthe Hertzsprung-Russell (HR) diagram, but pulsation was detected foronly two of them in each cluster.

The origin of massive O-type field stars. I. A search for clusters
We present a study aimed at clarifying the birthplace for 43 massiveO-type field stars. In this first paper we present the observationalpart: a search for stellar clusters near the target stars. We derivestellar density maps at two different resolving scales, viz. ˜0.25pc and ˜1.0 pc from NTT and TNG imaging and the 2MASS catalogue.These scales are typical for cluster sizes. The main result is that thelarge majority of the O-type field population are isolated stars: only12% (5 out of 43) of the O-type field stars is found to harbour asmall-scale stellar cluster. We review the literature and aim atcharacterizing the stellar field of each O-type field star with theemphasis on star formation and the presence of known young stellarclusters. An analysis of the result of this paper and a discussion ofthe O-type field population as products of a dynamical ejection event ispresented in an accompanying paper.Based on observations collected at the European Southern Observatory,Chile, and at the Italian Telescopio Nazionale Galileo (TNG) operated onthe island of La Palma by the Centro Galileo Galilei of the CNAA(Consorzio Nazionale per l'Astronomia e l'Astrofisica) at the SpanishObservatorio del Roque de los Muchachos of the Instituto de Astrofisicade Canarias.Table 2 and Figs. 4 to 17 are available in electronic form athttp://www.edpsciences.org

Structure and evolution of low-mass W UMa-type systems
The structure and evolution of low-mass W UMa-type contact binaries arediscussed by employing Eggleton's stellar evolution code. Assuming thatthese systems completely satisfy Roche geometry for contact binarieswith every kind of mass ratio (0.02-1.0) we calculate the relative radii(R1,2/A, where R1,2 are the radii of both starsand A is the orbital separation) of both components of contact binarieswith different contact depths between inner and outer Roche lobes. Weobtain a radius grid of contact binaries and can ensure the surfaces oftwo components lying on an equipotential surface by interpolation usingthis radius grid when we follow the evolution of the contact binaries.There are serious uncertainties concerning mainly the transfer of energyin these systems, i.e. it is unclear how and where the energy istransferred. We assume that the energy transfer takes place in differentregions of the common envelope to investigate the effects of the regionof energy transfer on the structure and evolution of contact binaries.We find that the region of energy transfer has a significant influenceon the structure and evolution of contact binaries, and conclude thatthe energy transfer may occur in the outermost layers of the commonconvective envelope for W-type systems, and that this transfer takesplace in the deeper layers of the common envelope for A-type systems.Meanwhile, if we assume that the energy transfer takes place in theoutermost layers for our model with low total mass, and find that ourmodel steadily evolves towards a system with a smaller mass ratio and adeeper envelope, suggesting that some A-type W UMa systems with lowtotal mass could be considered as the later evolutionary stages ofW-subtype systems, and that the surface temperature of the secondaryexceeds that of the primary during the time when the primary expandsrapidly, or the secondary contracts rapidly, suggesting that W-subtypesystems may be caused by expansion of the primary, or by the contractionof the secondary.

An XMM-Newton observation of the massive binary HD 159176
We report the analysis of an XMM-Newton observation of the close binaryHD 159176 (O7 V + O7 V). The observed LX/Lbolratio reveals an X-ray luminosity exceeding by a factor ˜7 theexpected value for X-ray emission from single O-stars, thereforesuggesting a wind-wind interaction scenario. EPIC and RGS spectra arefitted consistently with a two temperature mekal optically thin thermalplasma model, with temperatures ranging from ˜2 to6×106 K. At first sight, these rather low temperaturesare consistent with the expectations for a close binary system where thewinds collide well before reaching their terminal velocities. We alsoinvestigate the variability of the X-ray light curve of HD 159176 onvarious short time scales. No significant variability is found and weconclude that if hydrodynamical instabilities exist in the windinteraction region of HD 159176, they are not sufficient to produce anobservable signature in the X-ray emission. Hydrodynamic simulationsusing wind parameters from the literature reveal some puzzlingdiscrepancies. The most striking one concerns the predicted X-rayluminosity which is one or more orders of magnitude larger than theobserved one. A significant reduction of the mass loss rate of thecomponents compared to the values quoted in the literature alleviatesthe discrepancy but is not sufficient to fully account for the observedluminosity. Because hydrodynamical models are best for the adiabaticcase whereas the colliding winds in HD 159176 are most likely highlyradiative, a totally new approach has been envisaged, using ageometrical steady-state colliding wind model suitable for the case ofradiative winds. This model successfully reproduces the spectral shapeof the EPIC spectrum, but further developments are still needed toalleviate the disagreement between theoretical and observed X-rayluminosities.Based on observations with XMM-Newton, an ESA Science Mission withinstruments and contributions directly funded by ESA Member States andthe USA (NASA).

An XMM-Newton observation of the very young open cluster NGC 6383
We report the detection of a number of X-ray sources associated with thevery young open cluster NGC 6383. About two thirds of these objects arecorrelated with a rather faint optical source and all but one have atleast one infrared counterpart within a correlation radius of 8 arcsec.Although NGC 6383 is not associated with a prominent star formingregion, the overall properties of many of the X-ray sources suggest thatthey may be candidates for low-mass pre-main sequence stars. The numberof X-ray sources increases towards the cluster center suggesting thatthere exists a close relation between the massive O-star binary systemHD 159 176 in the cluster core and the population of X-ray brightlow-mass objects in NGC 6383.Based on observations with XMM-Newton, an ESA science mission withinstruments and contributions directly funded by ESA member states andthe USA (NASA).Table 1 is only available in electronic form athttp://www.edpsciences.org

Supernova remnants and γ-ray sources
Electronic Article Available from Elsevier Science.

On the Galactic Disk Metallicity Distribution from Open Clusters. I. New Catalogs and Abundance Gradient
We have compiled two new open cluster catalogs. In the first one, thereare 119 objects with ages, distances, and metallicities available, whilein the second one, 144 objects have both absolute proper motion andradial velocity data, of which 45 clusters also have metallicity dataavailable. Taking advantage of the large number of objects included inour sample, we present an iron radial gradient of about -0.063+/-0.008dex kpc-1 from the first sample, which is quite consistentwith the most recent determination of the oxygen gradient from nebulaeand young stars, about -0.07 dex kpc-1. By dividing clustersinto age groups, we show that the iron gradient was steeper in the past,which is consistent with the recent result from Galactic planetarynebulae data, and also consistent with inside-out galactic diskformation scenarios. Based on the cluster sample, we also discuss themetallicity distribution, cluster kinematics, and space distribution. Adisk age-metallicity relation could be implied by those properties,although we cannot give conclusive result from the age- metallicitydiagram based on the current sample. More observations are needed formetal-poor clusters. From the second catalog, we have calculated thevelocity components in cylindrical coordinates with respect to theGalactic standard of rest for 144 open clusters. The velocitydispersions of the older clusters are larger than those of youngclusters, but they are all much smaller than that of the Galactic thickdisk stars.

Proper Motions of Open Star Clusters and the Rotation Rate of the Galaxy
The mean proper motions of 167 Galactic open clusters withradial-velocity measurements are computed from the data of the Tycho-2catalog using kinematic and photometric cluster membership criteria. Theresulting catalog is compared to the results of other studies. The newproper motions are used to infer the Galactic rotation rate at the solarcircle, which is found to be ω0=+24.6±0.8 km s-1 kpc-1.Analysis of the dependence of the dispersion of ω0 estimates onheliocentric velocity showed that even the proper motions of clusterswith distances r>3 kpc contain enough useful information to be usedin kinematic studies demonstrating that the determination of propermotions is quite justified even for very distant clusters.

Proper motions of open clusters based on the TYCHO2 Catalogue. II. Clusters farther than 1 kpc
We determined the mean absolute proper motion of 94 open clusterssituated farther than 1 kpc from the Sun. The results are derived fromthe stellar proper motion data given in the Tycho2 Catalogue. The meanproper motion of the clusters and membership probability of individualstars were obtained from the proper motion data by applying thestatistical method proposed by Sanders (\cite{Sanders1971}). Themeasurements made use of a large number of stars, usually several tens,for each cluster. The total number of stars investigated in the fieldsof the clusters is 4864 of which 2021 were considered members. For 55clusters, this is the first determination of the proper motion. Based onobservations of the ESA Hipparcos satellite. Tables 1 to 95 are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/388/168

High-mass binaries in the very young open cluster NGC 6231. Implication for cluster and star formation
New radial-velocity observations of 37 O- and B stars in the very youngopen cluster NGC 6231 confirm the high frequency of short-periodspectroscopic binaries on the upper main sequence. Among the 14 O-typestars, covering all luminosity classes from dwarfs to supergiants, 8 aredefinitively double-lined systems and all periods but one are shorterthan 7 days. Several additional binaries have been detected among theearly B-type stars. NGC 6231 is an exceptional cluster to constrain thescenarios of cluster- and binary-star formation over a large range ofstellar masses. We discuss the evidences, based on NGC 6231 and 21 otherclusters, with a total of 120 O-type stars, for a clear dichotomy in themultiplicity rate and structure of very young open clusters containingO-type stars in function of the number of massive stars. However, wecannot answer the question whether the observed characteristics resultfrom the formation processes or from the early dynamical evolution.

Spectroscopic Binaries in Young Open Clusters
We have analysed the binarity and multiplicity characteristics of 120O-type stars in 22 very young open clusters and found marked differencesbetween the "rich" (N >= 6 O-type stars and primaries) and "poor" (N= 1) clusters. In the rich clusters, the binary frequencies vary between14% (1 SB among 7 stars) and 80% (8 SBs among 10 stars). Multiplesystems seem not to be frequent and stars are spread all over thecluster area. In poor clusters, the binary frequency of the O-typeobjects is nearly 100%, with orbital periods around 3 days. Severalbinaries are also eclipsing. Additional companions are always present.They form either hierarchical multiple stars or trapezium systems. Thesemassive multiple systems are generally found close to the clustercenter, although there are exceptions.

Absolute proper motions of open clusters. I. Observational data
Mean proper motions and parallaxes of 205 open clusters were determinedfrom their member stars found in the Hipparcos Catalogue. 360 clusterswere searched for possible members, excluding nearby clusters withdistances D < 200 pc. Members were selected using ground basedinformation (photometry, radial velocity, proper motion, distance fromthe cluster centre) and information provided by Hipparcos (propermotion, parallax). Altogether 630 certain and 100 possible members werefound. A comparison of the Hipparcos parallaxes with photometricdistances of open clusters shows good agreement. The Hipparcos dataconfirm or reject the membership of several Cepheids in the studiedclusters. Tables 1 and 2 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The central part of the young open cluster NGC 6383
The spectral and extinction properties of 14 pre-main sequencecandidates in the central part of the very young open cluster NGC 6383were investigated. None of these stars shows evidence for anomalouscircumstellar extinction. However, six out of 14 programme stars do showan infrared excess, indicative of the presence of circumstellar dust,heated up by the central star. One of these stars (number 4), also showsHα in emission and shows some indications for the presence ofcircumstellar gas in its spectrum, and might therefore be a newlyidentified Herbig Ae star. Based on observations collected at theEuropean Southern Observatory, La Silla, Chile.

On the evolutionary status of Be stars
We present a study of the incidence of Be stars in open clusters as afunction of the cluster age, using whenever possible ages determinedthrough Strömgren uvby photometry. For the first time in studies ofthis kind we have considered separately classical and Herbig Be stars.The main results can be summarized as follows: Clusters associated toemitting nebulosities and undergoing stellar formation are rich inemission line objects, which most likely are all pre main-sequencestars. No bona fide classical Be star has yet been identified amongthem. Clusters younger than 10 Myr and without associated nebulosity arealmost completely lacking Be stars, although they have a completeunevolved B main sequence. Classical Be stars appear at an age of 10Myr, and reach the maximum abundance in the age interval 13-25 Myr. Weinterpret our results in the sense that the Be phenomenon is anevolutionary effect which appears in the second half of the mainsequence lifetime of a B star. We propose that it can be related to mainstructural changes happening at this evolutionary phase, which also leadto the recently discovered non-monotonic helium abundance enhancement.The semiconvection or turbulent diffusion responsible of the surfacehelium enrichment, coupled with the high rotational velocity, cangenerate magnetic fields via the dynamo effect and thereby originate theBe phenomenon. Observational tests to this hypothesis are proposed.

Statistical parallaxes and kinematical parameters of classical Cepheids and young star clusters
The statistical-parallax method is applied for the first time to spacevelocities of 270 classical Cepheids with proper motions adopted fromHIPPARCOS (1997) and TRC (Hog et al. 1998) catalogs and distances basedon the period-luminosity relation by Berdnikov et al. (1996). Thedistance scale of short-period Cepheids (with periods less than 9 days)is shown to require an average correction of 15-20%, whereas statisticalparallaxes of Cepheids with periods > 9 days are found to agree wellwith photometric distances. It is shown that the luminosities ofshort-period Cepheids must have been underestimated partly due to thecontamination of this subsample by a substantial (20 to 40%) fraction offirst-overtone pulsators. The statistical-parallax technique is alsoapplied for the first time to 117 open clusters younger than 100 millionyears and with proper motions reduced to the HIPPARCOS reference system.It is concluded that a 0.12-0.15 mag increase of the distance scales ofopen clusters and Cepheids would be sufficient to reconcile thestatistical-parallax results inferred for these two types of objects.Such approach leads to an LMC distance modulus of less than 18.40 mag,which agrees, within the errors, with the short distance scale for RRLyrae variables and is at variance with the conclusions by Feast andCatchpole (1998) and Feast et al. (1998), who argue that the LMCdistance modulus should be increased to 18.70 mag. The distance scalebased on the Cepheid period-luminosity relation by Berdnikov and Efremov(1985) seems to be a good compromise. Extragalactic distances, whichrely on long-period Cepheids, seem to require no substantial correction.In addition to statistical parallaxes, kinematical parameters have beeninferred for the combined sample consisting of Cepheids andopen-clusters: solar-motion components (U0 ,V0,W0) = (9, 12, 7) km/s (+/- 1 km/s); velocity-ellipsoid axes(σU; σV; σW) = (15.0,10.3, 8.5) km/s (+/- 1 km/s); the angular velocity of rotation of thesubsystem, ω0 = 28.7 +/- 1 km/s/kpc, the Oort constantA = 17.4 +/- 1.5 km/s, and the second derivative of angular velocity,⋰ω0= 1.15 +/- 0.2 km/s/kpc3.

Observational Overview of Young Intermediate-Mass Objects: Herbig Ae/Be Stars
Not Available

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:17h34m48.00s
Apparent magnitude:5.5

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 6383

→ Request more catalogs and designations from VizieR