Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 4041



Upload your image

DSS Images   Other Images

Related articles

NGC 4435: a bulge-dominated galaxy with an unforeseen low-mass central black hole
We present the ionized gas kinematics of the SB0 galaxy NGC 4435 fromspectra obtained with the Space Telescope Imaging Spectrograph. Thisgalaxy has been selected on the basis of its ground-based spectroscopy,for displaying a position-velocity diagram consistent with the presenceof a circumnuclear Keplerian disc rotating around a supermassive blackhole (SMBH). We obtained the Hα and [NII]λ6583 kinematicsin the galaxy nucleus along the major axis and two parallel offsetpositions. We built a dynamical model of the gaseous disc taking intoaccount the whole bi-dimensional velocity field and the instrumentalsetup. For the mass of the central SMBH, we found an upper limit of 7.5× 106Msolar at the 3σ level. Thisindicates that the mass of the SMBH of NGC 4435 is lower than the oneexpected from the M•-σc (5 ×107Msolar) and near-infraredM•-Lbulge (4 ×107Msolar) relationships.

Low-Luminosity Active Galaxies and Their Central Black Holes
Central black hole masses for 117 spiral galaxies representingmorphological stages S0/a through Sc and taken from the largespectroscopic survey of Ho et al. are derived using Ks-banddata from the Two Micron All Sky Survey. Black hole masses are foundusing a calibrated black hole-Ks bulge luminosity relation,while bulge luminosities are measured by means of a two-dimensionalbulge-disk decomposition routine. The black hole masses are correlatedagainst a variety of parameters representing properties of the nucleusand host galaxy. Nuclear properties such as line width (FWHM [N II]), aswell as emission-line ratios (e.g., [O III]/Hβ, [O I]/Hα, [NII]/Hα, and [S II]/Hα), show a very high degree ofcorrelation with black hole mass. The excellent correlation with linewidth supports the view that the emission-line gas is in virialequilibrium with either the black hole or bulge potential. The very goodemission-line ratio correlations may indicate a change in ionizingcontinuum shape with black hole mass in the sense that more massiveblack holes generate harder spectra. Apart from theinclination-corrected rotational velocity, no excellent correlations arefound between black hole mass and host galaxy properties. Significantdifferences are found between the distributions of black hole masses inearly-, mid-, and late-type spiral galaxies (subsamples A, B, and C) inthe sense that early-type galaxies have preferentially larger centralblack holes, consistent with observations that Seyfert galaxies arefound preferentially in early-type systems. The line width distributionsshow a marked difference among subsamples A, B, and C in the sense thatearlier type galaxies have larger line widths. There are also cleardifferences in line ratios between subsamples A+B and C that likely arerelated to the level of ionization in the gas. Finally, aKs-band Simien & de Vaucouleurs diagram shows excellentagreement with the original B-band relation, although there is a largedispersion at a given morphological stage.

The structure of galactic disks. Studying late-type spiral galaxies using SDSS
Using imaging data from the SDSS survey, we present the g' and r' radialstellar light distribution of a complete sample of ~90 face-on tointermediate inclined, nearby, late-type (Sb-Sdm) spiral galaxies. Thesurface brightness profiles are reliable (1 σ uncertainty lessthan 0.2 mag) down to μ˜27 mag/''. Only ~10% of all galaxies havea normal/standard purely exponential disk down to our noise limit. Thesurface brightness distribution of the rest of the galaxies is betterdescribed as a broken exponential. About 60% of the galaxies have abreak in the exponential profile between ˜ 1.5-4.5 times thescalelength followed by a downbending, steeper outer region. Another~30% shows also a clear break between ˜ 4.0-6.0 times thescalelength but followed by an upbending, shallower outer region. A fewgalaxies have even a more complex surface brightness distribution. Theshape of the profiles correlates with Hubble type. Downbending breaksare more frequent in later Hubble types while the fraction of upbendingbreaks rises towards earlier types. No clear relation is found betweenthe environment, as characterised by the number of neighbours, and theshape of the profiles of the galaxies.

Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research
This review discusses the current status of supermassive black holeresearch, as seen from a purely observational standpoint. Since theearly ‘90s, rapid technological advances, most notably the launchof the Hubble Space Telescope, the commissioning of the VLBA andimprovements in near-infrared speckle imaging techniques, have not onlygiven us incontrovertible proof of the existence of supermassive blackholes, but have unveiled fundamental connections between the mass of thecentral singularity and the global properties of the host galaxy. It isthanks to these observations that we are now, for the first time, in aposition to understand the origin, evolution and cosmic relevance ofthese fascinating objects.

The Schmidt Law at High Molecular Densities
We combined Hα and recent high-resolution12CO(J=1‑0) data to consider the quantitative relationbetween the gas mass and the star-formation rate, or the so-calledSchmidt law in nearby spiral galaxies at regions of high moleculardensity. The relation between the gas quantity and the star-formationrate has not been previously studied for high-density regions, but usinghigh-resolution CO data obtained at the Nobeyama Millimeter Array, wefound that the Schmidt law is valid at densities as high as 103Modotpc-2 for sample spiral galaxies, which is anorder of magnitude denser than what has been known to be the maximumdensity at which the empirical law holds for non-starburst galaxies.Furthermore, we obtained a Schmidt law index of N = 1.33 ± 0.09and a roughly constant star-formation efficiency over the entire disk,even within several hundred parsecs of the nucleus. These results implythat the physics of star formation does not change in the centralregions of spiral galaxies. Comparisons with starburst galaxies are alsogiven. We find a possible discontinuity in the Schmidt law betweennormal and starburst galaxies.

Supermassive black hole mass measurements for NGC 1300 and 2748 based on Hubble Space Telescope emission-line gas kinematics
We present Space Telescope Imaging Spectrograph emission-line spectra ofthe central regions of the spiral galaxies NGC 1300 and 2748. From thederived kinematics of the nuclear gas we have found evidence for centralsupermassive black holes in both galaxies. The estimated masses of theblack holes in NGC 1300 and 2748 are (6.6+6.3-3.2)× 107 and (4.4+3.5-3.6) ×107 Msolar, respectively (both at the 95 per centconfidence level). These two black hole mass estimates contribute to thepoorly sampled low-mass end of the nuclear black hole mass spectrum.

Integral Field Spectroscopy of 23 Spiral Bulges
We have obtained integral-field spectroscopy for 23 spiral bulges usingINTEGRAL on the William Herschel Telescope and SPIRAL on theAnglo-Australian Telescope. This is the first two-dimensional surveydirected solely at the bulges of spiral galaxies. Eleven galaxies of thesample do not have previous measurements of the stellar velocitydispersion (σ*). These data are designed to complementour Space Telescope Imaging Spectrograph program for estimating blackhole masses in the range 106-108 Msolarusing gas kinematics from nucleated disks. These observations will serveto derive the stellar dynamical bulge properties using the traditionalMg b and Ca II triplets. We use both cross-correlation and maximumpenalized likelihood to determine projected σ* in thesesystems and present radial velocity fields, major axis rotation curves,curves of growth, and σ* fields. Usingcross-correlation to extract the low-order two-dimensional stellardynamics we generally see coherent radial rotation and irregularvelocity dispersion fields suggesting that σ* is anontrivial parameter to estimate.

Ultraluminous X-Ray Sources in Nearby Galaxies from ROSAT High Resolution Imager Observations I. Data Analysis
X-ray observations have revealed in other galaxies a class ofextranuclear X-ray point sources with X-ray luminosities of1039-1041 ergs s-1, exceeding theEddington luminosity for stellar mass X-ray binaries. Theseultraluminous X-ray sources (ULXs) may be powered by intermediate-massblack holes of a few thousand Msolar or stellar mass blackholes with special radiation processes. In this paper, we present asurvey of ULXs in 313 nearby galaxies withD25>1' within 40 Mpc with 467 ROSAT HighResolution Imager (HRI) archival observations. The HRI observations arereduced with uniform procedures, refined by simulations that help definethe point source detection algorithm employed in this survey. A sampleof 562 extragalactic X-ray point sources withLX=1038-1043 ergs s-1 isextracted from 173 survey galaxies, including 106 ULX candidates withinthe D25 isophotes of 63 galaxies and 110 ULX candidatesbetween 1D25 and 2D25 of 64 galaxies, from which aclean sample of 109 ULXs is constructed to minimize the contaminationfrom foreground or background objects. The strong connection betweenULXs and star formation is confirmed based on the striking preference ofULXs to occur in late-type galaxies, especially in star-forming regionssuch as spiral arms. ULXs are variable on timescales over days to yearsand exhibit a variety of long term variability patterns. Theidentifications of ULXs in the clean sample show some ULXs identified assupernovae (remnants), H II regions/nebulae, or young massive stars instar-forming regions, and a few other ULXs identified as old globularclusters. In a subsequent paper, the statistic properties of the surveywill be studied to calculate the occurrence frequencies and luminosityfunctions for ULXs in different types of galaxies to shed light on thenature of these enigmatic sources.

EGRET Upper Limits and Stacking Searches of Gamma-Ray Observations of Luminous and Ultraluminous Infrared Galaxies
We present a stacking analysis of EGRET γ-ray observations at thepositions of luminous and ultraluminous infrared galaxies. The latterwere selected from the recently presented HCN survey, which is thoughtto contain the most active star-forming regions of the universe.Different sorting criteria are used, and since there is no positivecollective detection of γ-ray emission from these objects, wedetermined both collective and individual upper limits. The uppermostexcess we find appears in the case of ULIRGs ordered by redshift, at avalue of 1.8 σ.

Nuclear Properties of Nearby Spiral Galaxies from Hubble Space Telescope NICMOS Imaging and STIS Spectroscopy
We investigate the central regions of 23 spiral galaxies using SpaceTelescope Imaging Spectrograph (STIS) spectroscopy and archivalNear-Infrared Camera and Multi-Object Spectrometer (NICMOS) imaging. Thesample is taken from our program to determine the masses of centralmassive black holes (MBHs) in 54 nearby spiral galaxies. Stars arelikely to contribute significantly to any dynamical central massconcentration that we find in our MBH program, and this paper is part ofa series to investigate the nuclear properties of these galaxies. We usethe Nuker law to fit surface brightness profiles, derived from theNICMOS images, to look for nuclear star clusters and find possibleextended sources in three of the 23 galaxies studied (13%). The factthat this fraction is lower than that inferred from optical Hubble SpaceTelescope studies is probably due to the greater spatial resolution ofthose studies. Using R-H and J-H colors and equivalent widths ofHα emission (from the STIS spectra), we investigate the nature ofthe stellar population with evolutionary models. Under the assumption ofhot stars ionizing the gas, as opposed to a weak active galactic nucleus(AGN), we find that there are young stellar populations (~10-20 Myr);however, these data do not allow us to determine what percentage of thetotal nuclear stellar population they form. In addition, in an attemptto find any unknown AGN, we use [N II] and [S II] line flux ratios(relative to Hα) and find tentative evidence for weak AGNs in NGC1300 and NGC 4536.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy (AURA), Inc.,under NASA contract NAS 5-26555.

The Type IIn supernova 1994W: evidence for the explosive ejection of a circumstellar envelope
We present and analyse spectra of the Type IIn supernova (SN) 1994Wobtained between 18 and 203d after explosion. During the luminous phase(first 100d) the line profiles are composed of three major components:(i) narrow P-Cygni lines with the absorption minima at-700kms-1 (ii) broad emission lines with blue velocity atzero intensity ~4000km s-1 and (iii) broad, smooth wingsextending out to at least ~5000kms-1, most apparent inHα. These components are identified with an expandingcircumstellar (CS) envelope, shocked cool gas in the forward post-shockregion, and multiple Thomson scattering in the CS envelope,respectively. The absence of broad P-Cygni lines from the SN is theresult of the formation of an optically thick, cool, dense shell at theinterface of the ejecta and the CS envelope. Models of the SNdeceleration and Thomson scattering wings are used to recover thedensity (n~ 109cm-3), radial extent [~(4-5)× 1015cm] and Thomson optical depth(τT>~ 2.5) of the CS envelope during the first month.The plateau-like SN light curve is reproduced by a hydrodynamical modeland is found to be powered by a combination of internal energy leakageafter the explosion of an extended pre-SN (~1015cm) andsubsequent luminosity from CS interaction. The pre-explosion kinematicsof the CS envelope is recovered, and is close to homologous expansionwith outer velocity ~1100kms-1 and a kinematic age of ~1.5yr.The high mass (~0.4Msolar) and kinetic energy (~2 ×1048erg) of the CS envelope, combined with low age, stronglysuggest that the CS envelope was explosively ejected ~1.5yr prior to theSN explosion.

HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies
We report systematic HCN J=1-0 (and CO) observations of a sample of 53infrared (IR) and/or CO-bright and/or luminous galaxies, including sevenultraluminous infrared galaxies, nearly 20 luminous infrared galaxies,and more than a dozen of the nearest normal spiral galaxies. This is thelargest and most sensitive HCN survey of galaxies to date. All galaxiesobserved so far follow the tight correlation between the IR luminosityLIR and the HCN luminosity LHCN initially proposedby Solomon, Downes, & Radford, which is detailed in a companionpaper. We also address here the issue of HCN excitation. There is noparticularly strong correlation between LHCN and the 12 μmluminosity; in fact, of all the four IRAS bands, the 12 μm luminosityhas the weakest correlation with the HCN luminosity. There is also noevidence of stronger HCN emission or a higher ratio of HCN and COluminosities LHCN/LCO for galaxies with excess 12μm emission. This result implies that mid-IR radiative pumping, orpopulating, of the J=1 level of HCN by a mid-IR vibrational transitionis not important compared with the collisional excitation by densemolecular hydrogen. Furthermore, large velocity gradient calculationsjustify the use of HCN J=1-0 emission as a tracer of high-densitymolecular gas (>~3×104/τcm-3) andgive an estimate of the mass of dense molecular gas from HCNobservations. Therefore, LHCN may be used as a measure of thetotal mass of dense molecular gas, and the luminosity ratioLHCN/LCO may indicate the fraction of moleculargas that is dense.

The Star Formation Rate and Dense Molecular Gas in Galaxies
HCN luminosity is a tracer of dense molecular gas,n(H2)>~3×104cm-3, associatedwith star-forming giant molecular cloud (GMC) cores. We present theresults and analysis of our survey of HCN emission from 65 infraredgalaxies, including nine ultraluminous infrared galaxies (ULIGs,LIR>~1012Lsolar), 22 luminousinfrared galaxies (LIGs,1011Lsolar0.06 are LIGs or ULIGs. Normal spiralsall have similar and low dense gas fractionsLHCN/LCO=0.02-0.05. The global star formationefficiency depends on the fraction of the molecular gas in a densephase.

Nuclear Properties of a Sample of Nearby Spiral Galaxies from Hubble Space Telescope STIS Imaging
We present surface photometry for the central regions of a sample of 48spiral galaxies (mostly unbarred and barred of type Sbc or Sc) observedwith the Space Telescope Imaging Spectrograph on board the Hubble SpaceTelescope. Surface brightness profiles (SBPs) were derived and modeledwith a Nuker law. We also analyzed archival Wide Field Planetary Camera2 images with a larger field of view, which are available for 18galaxies in our sample. We modeled the extracted bulge SBPs with anexponential, an r1/4, or an rn profile. Inagreement with previous studies, we find that bulges of Sbc galaxiesfall into two categories: bulges well described by an exponentialprofile and those well described by an r1/4 profile. Only onegalaxy requires the use of a more general Sérsic profile toproperly describe the bulge. Nuclear photometrically distinct componentsare found in ~55% of the galaxies. For those that we classify as starclusters on the basis of their resolved extent, we find absolutemagnitudes that are brighter on average than those previously identifiedin spiral galaxies. This might be due to a bias in our sample towardstar-forming galaxies, combined with a trend for star-forming galaxiesto host brighter central clusters.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555.

On-axis spectroscopy of the z =0.144 radio-loud quasar HE 1434-1600: an elliptical host with a highly ionized ISM
VLT on-axis optical spectroscopy of the z=0.144 radio-loud quasar HE1434-1600 is presented. The spatially resolved spectra of the hostgalaxy are deconvolved and separated from those of the central quasar inorder to study the dynamics of the stars and gas as well as the physicalconditions of the ISM. We find that the host of HE 1434-1600 is anelliptical galaxy that resides in a group of at least 5 member galaxies,and that most likely experienced a recent collision with its nearestcompanion. Compared with other quasar host galaxies, HE 1434-1600 has ahighly ionized ISM. The ionization state corresponds to that of typicalSeyferts, but the ionized regions are not distributed in a homogeneousway around the QSO, and are located preferentially several kiloparsecsaway from it. While the stellar absorption lines do not show anysignificant velocity field, the gas emission lines do. The observed gasvelocity field is hard to reconcile with dynamical models involvingrotating disk, modified Hubble laws or power laws, that all requireextreme central masses (M>109 Mȯ) toprovide only poor fit to the data. Power law models, which best fit thedata, provide a total mass of M(<10 kpc) = 9.2 ×1010 Mȯ. We conclude that the recentinteraction between HE 1434-1600 and its closest companion has stronglyaffected the gas velocity and ionization state, from the center of thegalaxy to its most external parts.Based on observations made with the ESO Very Large Telescope ANTU/UT1 atESO-Paranal observatory, Chile (program 65.P-0361(A)).

X-Ray Emission from a Sample of Young Supernovae
When a massive star produces a powerful stellar wind prior to itssupernova event, theory predicts that the collision of the explodedstellar ejecta with the wind leads to a reverse shock, creating softX-ray emission. To understand the frequency at which luminous youngX-ray supernovae occur, we used ROSAT to observe a complete sample ofnearby supernovae (vhelio<1700 km s-1) thatoccurred in the period 1985.5 through 1994.3, which included eight TypeIa supernovae and 19 Type Ib and Type II events. Three supernovae aredetected in this time frame, SN 1987A (LMC), SN 1993J (NGC 3031), and apreviously unreported source, SN 1992ad, a Type II supernova in NGC4411b. No supernova had 0.5-2 keV luminosities exceeding2×1039 ergs s-1, so at the 95% confidencelevel, the probability of an individual supernova exceeding thisluminosity limit is less than 12%. Two of these supernovae hadluminosities brighter than 6×1038 ergs s-1and at the 95% confidence level, the probability of a supernova beingdetected above this luminosity is in the range 8.7%-51%. It is unlikelyfor young supernovae to be a large component of the IntermediateLuminosity X-Ray Object (IXO or ULX) class, where the luminosity exceeds2×1039 ergs s-1. The rate of successfuldetections appears to increase for sensitivities in the 1037ergs s-1 range, especially when obtained close to the time ofthe event.

Is There Really a Black Hole at the Center of NGC 4041? Constraints from Gas Kinematics
We present Space Telescope Imaging Spectrograph spectra of the Sbcspiral galaxy NGC 4041, which were used to map the velocity field of thegas in its nuclear region. We detect the presence of a compact(r~=0.4"~=40 pc), high surface brightness, rotating nuclear diskcospatial with a nuclear star cluster. The disk is characterized by arotation curve with a peak-to-peak amplitude of ~40 km s-1and is systematically blueshifted by ~10-20 km s-1 withrespect to the galaxy systemic velocity. With the standard assumption ofconstant mass-to-light ratio and with the nuclear disk inclination takenfrom the outer disk, we find that a dark point mass of(1+0.6-0.7)×107 Msolaris needed to reproduce the observed rotation curve. However, theobserved blueshift suggests the possibility that the nuclear disk couldbe dynamically decoupled. Following this line of reasoning, we relax thestandard assumptions and find that the kinematical data can be accountedfor by the stellar mass provided that either the central mass-to-lightratio is increased by a factor of ~2 or the inclination is allowed tovary. This model results in a 3 σ upper limit of6×106 Msolar on the mass of any nuclearblack hole (BH). Overall, our analysis only allows us to set an upperlimit of 2×107 Msolar on the mass of thenuclear BH. If this upper limit is taken in conjunction with anestimated bulge B magnitude of -17.7 and with a central stellar velocitydispersion of ~=95 km s-1, then these results are notinconsistent with both the MBH-Lsph and theMBH-σ* correlations. Constraints on BHmasses in spiral galaxies of types as late as Sbc are still very scarce;therefore, the present result adds an important new data point to ourunderstanding of BH demography.Based on observations made with the NASA/ESA Hubble Space Telescope,obtained at the Space Telescope Science Institute, which is operated bythe Association of Universities for Research in Astronomy, Inc., underNASA contract NAS 5-26555. These observations are associated withproposal 8228.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

An Atlas of Hubble Space Telescope Spectra and Images of Nearby Spiral Galaxies
We have observed 54 nearby spiral galaxies with the Space TelescopeImaging Spectrograph (STIS) on the Hubble Space Telescope to obtainoptical long-slit spectra of nuclear gas disks and STIS optical (~Rband) images of the central 5''×5'' of thegalaxies. These spectra are being used to determine the velocity fieldof nuclear disks and hence to detect the presence of central massiveblack holes. Here we present the spectra for the successfulobservations. Dust obscuration can be significant at opticalwavelengths, and so we also combine the STIS images with archivalNear-Infrared Camera and Multi-Object Spectrometer H-band images toproduce color maps to investigate the morphology of gas and dust in thecentral regions. We find a great variety in the different morphologies,from smooth distributions to well-defined nuclear spirals and dustlanes.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS5-26555.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr ( or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Bar strengths in spiral galaxies estimated from 2MASS images
Non-axisymmetric forces are presented for a sample of 107 spiralgalaxies, of which 31 are barred (SB) and 53 show nuclear activity. As adata base we use JHK images from the 2 Micron All-sky Survey, and thenon-axisymmetries are characterized by the ratio of the tangential forceto the mean axisymmetric radial force field, following Buta & Block.Bar strengths have an important role in many extragalactic problems andtherefore it is important to verify that the different numerical methodsapplied for calculating the forces give mutually consistent results. Weapply both direct Cartesian integration and a polar grid integrationutilizing a limited number of azimuthal Fourier components of density.We find that the bar strength is independent of the method used toevaluate the gravitational potential. However, because of thedistance-dependent smoothing by Fourier decomposition, the polar methodis more suitable for weak and noisy images. The largest source ofuncertainty in the derived bar strength appears to be the uncertainty inthe vertical scaleheight, which is difficult to measure directly formost galaxies. On the other hand, the derived bar strength is ratherinsensitive to the possible gradient in the vertical scaleheight of thedisc or to the exact model of the vertical density distribution,provided that the same effective vertical dispersion is assumed in allmodels. In comparison with the pioneering study by Buta & Block, thebar strength estimate is improved here by taking into account thedependence of the vertical scaleheight on the Hubble type: we find thatfor thin discs bar strengths are stronger than for thick discs by anamount that may correspond to as much as one bar strength class. Weconfirm the previous result by Buta and co-workers showing that thedispersion in bar strength is large among all the de Vaucouleurs opticalbar classes. In the near-infrared 40 per cent of the galaxies in oursample have bars (showing constant phases in the m= 2 Fourier amplitudesin the bar region), while in the optical band one-third of these barsare obscured by dust. Significant non-axisymmetric forces can also beinduced by the spiral arms, generally in the outer parts of the galacticdiscs, which may have important implications on galaxy evolution.Possible biases of the selected sample are also studied: we find thatthe number of bars identified drops rapidly when the inclination of thegalactic disc is larger than 50°. A similar bias is found in theThird Reference Catalogue of Bright Galaxies, which might be of interestwhen comparing bar frequencies at high and low redshifts.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

Supernovae in isolated galaxies, in pairs and in groups of galaxies
In order to investigate the influence of environment on supernova (SN)production, we have performed a statistical investigation of the SNediscovered in isolated galaxies, in pairs and in groups of galaxies. 22SNe in 18 isolated galaxies, 48 SNe in 40 galaxy members of 37 pairs and211 SNe in 170 galaxy members of 116 groups have been selected andstudied. We found that the radial distributions of core-collapse SNe ingalaxies located in different environments are similar, and consistentwith those reported by Bartunov, Makarova & Tsvetkov. SNe discoveredin pairs do not favour a particular direction with respect to thecompanion galaxy. Also, the azimuthal distributions inside the hostmembers of galaxy groups are consistent with being isotropics. The factthat SNe are more frequent in the brighter components of the pairs andgroups is expected from the dependence of the SN rates on the galaxyluminosity. There is an indication that the SN rate is higher in galaxypairs compared with that in groups. This can be related to the enhancedstar formation rate in strongly interacting systems. It is concludedthat, with the possible exception of strongly interacting systems, theparent galaxy environment has no direct influence on SN production.

The Frequency of Active and Quiescent Galaxies with Companions: Implications for the Feeding of the Nucleus
We analyze the idea that nuclear activity, either active galactic nuclei(AGNs) or star formation, can be triggered by interactions by studyingthe percentage of active, H II, and quiescent galaxies with companions.Our sample was selected from the Palomar survey and avoids selectionbiases faced by previous studies. This sample was split into fivedifferent groups, Seyfert galaxies, LINERs, transition galaxies, H IIgalaxies, and absorption-line galaxies. The comparison between the localgalaxy density distributions of the different groups showed that in mostcases there is no statistically significant difference among galaxies ofdifferent activity types, with the exception that absorption-linegalaxies are seen in higher density environments, since most of them arein the Virgo Cluster. The comparison of the percentage of galaxies withnearby companions showed that there is a higher percentage of LINERs,transition galaxies, and absorption-line galaxies with companions thanSeyfert and H II galaxies. However, we find that when we consider onlygalaxies of similar morphological types (elliptical or spiral), there isno difference in the percentage of galaxies with companions amongdifferent activity types, indicating that the former result was due tothe morphology-density effect. In addition, only small differences arefound when we consider galaxies with similar Hα luminosities. Thecomparison between H II galaxies of different Hα luminositiesshows that there is a significantly higher percentage of galaxies withcompanions among H II galaxies with L(Hα)>1039 ergss-1 than among those with L(Hα)<=1039ergs s-1, indicating that interactions increase the amount ofcircumnuclear star formation, in agreement with previous results. Thefact that we find that galaxies of different activity types have thesame percentage of companions suggests that interactions betweengalaxies is not a necessary condition to trigger the nuclear activity inAGNs. We compare our results with previous ones and discuss theirimplications.

Global physical conditions of the interstellar medium in nearby galaxies
Far-infrared spectra (43-197 mu m) of 34 nearby galaxies obtained by theLong Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory(ISO) were analyzed to investigate the general properties ofinterstellar matter in galaxies. The present sample includes not onlynormal galaxies but also starbursts and active galactic nuclei (AGNs).Far-infrared forbidden lines, such as [C Ii]158 mu m, [O I]63 mu m, [NIi]122 mu m, and [O Iii]88 mu m, were detected in most of the samplegalaxies. [O I]145 mu m line was detected in 13 galaxies. The linefluxes of [C Ii]158 mu m and [N Ii]122 mu m relative to the totalfar-infrared flux (FIR) decrease as the far-infrared color becomesbluer, while the ratio of the [O I]63 mu m flux to FIR does not show asystematic trend with the color. The [O Iii]88 mu m to FIR ratio shows alarge scatter with a weak trend of increase with the color. AGNs do notshow any distinguishable trend from normal and starburst galaxies in thefar-infrared spectra, suggesting that the far-infrared emission ismainly driven by star-formation activities even in AGNs. We estimate thephysical conditions of photodissociation regions (PDRs) in the samplegalaxies, such as the far-ultraviolet radiation field intensityG0 and the gas density n by assuming that all the observed [OI]63 mu m and far-infrared continuum emissions come from PDRs.Comparison with PDR models indicates that G0 ranges from102-104 and n ~ 102-104cm-3. The present results also suggest that n variesproportionally with G0. The ratio of [C Ii] 158 mu m to CO(J=1-0) line emission supports the linear increase in n withG0. We estimate that about a half of [C Ii]158 mu m emissionoriginates from PDRs and attribute the rest to the emission as comingfrom low-density diffuse ionized gas. The estimated intensity of [CIi]158 mu m from the ionized gas is compatible with the observedintensity of [N Ii]122 mu m if both lines come from the same diffuseionized gas. The present analysis suggests that the decrease in [CIi]158 mu m/FIR with the far-infrared color may not be accounted for bythe decrease in the photoelectric heating efficiency owing to theincrease in positive charges of dust grains because a measure of theefficiency, G0/n, is found to stay constant with thefar-infrared color. Instead the decrease can be interpreted in terms ofeither the increase in the collisional de-excitation of the [C Ii]transition due to the increase in the gas density or the decrease in theionized component relative to the far-infrared intensity suggested bythe decrease in [N Ii]122 mu m/FIR. Based on the present analysis, wederive average relations of the far-infrared color with G0and n in galaxies, which can be applied to the investigation ofinterstellar matter in distant galaxies. Based on observations with ISO,an ESA project with instruments funded by ESA Member States (especiallythe PI countries: France, Germany, The Netherlands and the UK) and withthe participation of ISAS and NASA.

The relationship between star formation rates and mid-infrared emission in galactic disks
The Hα and mid-infrared mean disk surface brightnesses arecompared in a sample of nearby spirals observed by ISOCAM. This showsthat, in spiral disks, dust emission at 7 and 15 mu m provides areasonable star formation tracer. The fact that the 15 to 7 mu m fluxratio is nearly constant in various global exciting conditions indicatesa common origin, namely the aromatic infrared band carriers, and impliesthat at these wavelengths, dust emission from the disks of normalgalaxies is dominated by photodissociation regions and not by H Iiregions themselves. We use this newly-found correlation between themid-infrared and the Hα line to investigate the nature of the linkbetween the far-infrared (60 and 100 mu m) and Hα . Although theseparation of the central regions from the disk is impossible to achievein the far-infrared, we show that a circumnuclear contribution to thedust emission, having no equivalent counterpart in Hα , is mostlikely responsible for the well-known non-linearity between far-infraredand Hα fluxes in spiral galaxies. We derive a calibration of 7 and15 mu m fluxes in terms of star formation rates from a primarycalibration of Hα in the literature, and also outline theapplicability limits of the proposed conversion, which should not beblindly extrapolated to objects whose nature is unknown. Based onobservations with ISO, an ESA project with instruments funded by ESAMember States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.

The impact of bars on the mid-infrared dust emission of spiral galaxies: global and circumnuclear properties
We study the mid-infrared properties of a sample of 69 nearby spiralgalaxies, selected to avoid Seyfert activity contributing a significantfraction of the central energetics, or strong tidal interaction, and tohave normal infrared luminosities. These observations were obtained withISOCAM, which provides an angular resolution of the order of 10arcsec(half-power diameter of the point spread function) and low-resolutionspectro-imaging information. Between 5 and 18 mu m, we mainly observetwo dust phases, aromatic infrared bands and very small grains, both outof thermal equilibrium. On this sample, we show that the globalF15/F_7 colors of galaxies are very uniform, the onlyincrease being found in early-type strongly barred galaxies, consistentwith previous IRAS studies. The F15/F_7 excesses areunambiguously due to galactic central regions where bar-inducedstarbursts occur. However, the existence of strongly barred early-typegalaxies with normal circumnuclear colors indicates that therelationship between a distortion of the gravitational potential and acentral starburst is not straightforward. As the physical processes atwork in central regions are in principle identical in barred andunbarred galaxies, and since this is where the mid-infrared activity ismainly located, we investigate the mid-infrared circumnuclear propertiesof all the galaxies in our sample. We show how surface brightnesses andcolors are related to both the available molecular gas content and themean age of stellar populations contributing to dust heating. Therefore,the star formation history in galactic central regions can beconstrained by their position in a color-surface brightness mid-infrareddiagram. Based on observations with ISO, an ESA project with instrumentsfunded by ESA Member States (especially the PI countries: France,Germany, the Netherlands and the UK) and with the participation of ISASand NASA.

The UK Nova/Supernova Patrol-The First 25 Years
The history, accomplishments, and activities of the UK Nova/SupernovaPatrol are described.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

Lopsided Galaxies, Weak Interactions, and Boosting the Star Formation Rate
To investigate the link between weak tidal interactions in disk galaxiesand the boosting of their recent star formation, we obtain images andspatially integrated spectra (3615 Å<=λ<=5315Å) for 40 late-type spiral galaxies (Sab-Sbc) with varying degreesof lopsidedness (a dynamical indicator of weak interactions). Wequantify lopsidedness as the amplitude of the m=1Fourier component of the azimuthal surface brightness distributionaveraged over a range of radii. The median spectrum of the most lopsidedgalaxies shows strong evidence for a more prominent young stellarpopulation (i.e., strong Balmer absorption, strong nebular emission, aweak 4000 Å break, and a blue continuum) when compared to themedian spectrum of the most symmetric galaxies. We compare the youngstellar content, quantified by EW(Hδabs) and thestrength of the 4000 Å break (D4000), with lopsidednessand find a 3-4 σ correlation between the two. We also find a 3.2σ correlation between EW(Hβemission) andlopsidedness. Using the evolutionary population synthesis code ofBruzual & Charlot we model the spectra as an ``underlyingpopulation'' and a superimposed ``boost population'' with the aim ofconstraining the fractional boost in the SFR averaged over the past 0.5Gyr (the characteristic lifetime of lopsidedness). From the differencein both EW(Hδabs) and the strength of the 4000 Åbreak (D4000) between the most and least symmetric thirds ofour sample, we infer that ~1×109 Msolar ofstars are formed over the duration of a lopsided event in addition tothe ``underlying'' star formation history (assuming a final galacticstellar mass of 1010 Msolar). This corresponds toa factor of 8 increase in the star formation rate over the past5×108 years. For the nuclear spectra, all of the abovecorrelations except D4000 versus areweaker than for the disk, indicating that in lopsided galaxies, the starformation boost is not dominated by the nucleus.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Constellation:Ursa Major
Right ascension:12h02m12.10s
Aparent dimensions:2.57′ × 2.455′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 4041

→ Request more catalogs and designations from VizieR