Contents
Images
Upload your image
DSS Images Other Images
Related articles
A catalogue of eclipsing variables A new catalogue of 6330 eclipsing variable stars is presented. Thecatalogue was developed from the General Catalogue of Variable Stars(GCVS) and its textual remarks by including recently publishedinformation about classification of 843 systems and making correspondingcorrections of GCVS data. The catalogue1 represents thelargest list of eclipsing binaries classified from observations.
| Herbig Ae/Be Stars in nearby OB Associations We have carried out a study of the early-type stars in nearby OBassociations spanning an age range of ~3-16 Myr, with the aim ofdetermining the fraction of stars that belong to the Herbig Ae/Be class.We studied the B, A, and F stars in the nearby (<=500 pc) OBassociations Upper Scorpius, Perseus OB2, Lacerta OB1, and Orion OB1,with membership determined from Hipparcos data. We also included in ourstudy the early-type stars in the Trumpler 37 cluster, part of the CepOB2 association. We obtained spectra for 440 Hipparcos stars in theseassociations, from which we determined accurate spectral types, visualextinctions, effective temperatures, luminosities and masses, usingHipparcos photometry. Using colors corrected for reddening, we find thatthe Herbig Ae/Be stars and the classical Be (CBe) stars occupy clearlydifferent regions in the JHK diagram. Thus, we use the location on theJHK diagram, as well as the presence of emission lines and of strong 12μm flux relative to the visual, to identify the Herbig Ae/Be stars inthe associations. We find that the Herbig Ae/Be stars constitute a smallfraction of the early-type stellar population even in the youngerassociations. Comparing the data from associations with different agesand assuming that the near-infrared excess in the Herbig Ae/Be starsarises from optically thick dusty inner disks, we determined theevolution of the inner disk frequency with age. We find that the innerdisk frequency in the age range 3-10 Myr in intermediate-mass stars islower than that in the low-mass stars (<1 Msolar) inparticular, it is a factor of ~10 lower at ~3 Myr. This indicates thatthe timescales for disk evolution are much shorter in theintermediate-mass stars, which could be a consequence of more efficientmechanisms of inner disk dispersal (viscous evolution, dust growth, andsettling toward the midplane).
| Catalogue of Algol type binary stars A catalogue of (411) Algol-type (semi-detached) binary stars ispresented in the form of five separate tables of information. Thecatalogue has developed from an earlier version by including more recentinformation and an improved layout. A sixth table lists (1872) candidateAlgols, about which fewer details are known at present. Some issuesrelating to the classification and interpretation of Algol-like binariesare also discussed.Catalogue is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/417/263
| Merged catalogue of reflection nebulae Several catalogues of reflection nebulae are merged to create a uniformcatalogue of 913 objects. It contains revised coordinates,cross-identifications of nebulae and stars, as well as identificationswith IRAS point sources.The catalogue is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/399/141
| Einige interessante Bedeckungsveraenderliche. Not Available
| Do the Infrared Emission Features Need Ultraviolet Excitation? The Polycyclic Aromatic Hydrocarbon Model in UV-poor Reflection Nebulae One of the major challenges to identification of the 3.3, 6.2, 7.7, 8.6,and 11.3 μm interstellar infrared (IR) emission bands with polycyclicaromatic hydrocarbon (PAH) molecules has been the recent detection ofthese bands in regions with little ultraviolet (UV) illumination, sincesmall, neutral PAH molecules have little or no absorption at visiblewavelengths and therefore require UV photons for excitation. We showhere that our ``astronomical'' PAH model, incorporating the experimentalresult that the visual absorption edge shifts to longer wavelength uponionization and/or as the PAH size increases, can closely reproduce theobserved IR emission bands of vdB 133, a UV-poor reflection nebula. Wealso show that single-photon heating of ``astronomical'' PAHs inreflection nebulae near stars as cool as Teff=3000K canresult in observable emission at 6.2, 7.7, 8.6, and 11.3 μm.Illustrative mid-IR emission spectra are calculated for reflectionnebulae illuminated by cool stars with Teff=3500, 4500, and5000 K. These will allow comparison with future Space Infrared TelescopeFacility observations of vdB 135 (Teff=3600K), vdB 47(Teff=4500K), and vdB 101 (Teff=5000K). Thedependence on the effective temperature of the exciting star of theobserved 12 μm IRAS emission (relative to the total far-IR emission)is consistent with the PAH model for3000K<=Teff<=30,000K.
| Close binary systems in star-forming regions. EY ORI in the ORI I association. Not Available
| On the nature of the AM phenomenon or on a stabilization and the tidal mixing in binaries. II. Metallicity and pseudo-synchronization. We reveal sufficient evidences that for Am binaries the metallicitymight depend on their orbital periods, P_orb_, rather than on vsini. Inparticular, δm_1_ index seems to decrease with increasing orbitalperiod up to at least P_orb_=~50d, probably even up to P_orb_=~200d.This gives further support to our "tidal mixing + stabilization"hypothesis formulated in Part I. Moreover, while the most metallic Amstars seem to have rather large periods the slowest rotators are foundto exhibit substantially shorter P_orb_. A questioning eye is thus caston the generally adopted view that Am peculiarity is caused by asuppressed rotationally induced mixing in slowly rotating `single'stars. The observed anticorrelation between rotation and metallicity mayhave also other than the `textbook' explanation, namely being the resultof the correlation between metallicity and orbital period, as themajority of Am binaries are possibly synchronized. We further argue thatthere is a tendency in Am binaries towards pseudo-synchronization up toP_orb_=~35d. This has, however, no serious impact on our conclusionsfrom Part I; on the contrary, they still hold even if this effect istaken into account.
| Close binary systems in star-forming regions: FF Ori, FH Ori, FK Ori, and FR ORI in the ORI I association. Not Available
| A Spectroscopic Survey of Late F--K Eclipsing Binaries Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJS..106..133P&db_key=AST
| On the nature of the AM phenomenon or on a stabilization and the tidal mixing in binaries. I. Orbital periods and rotation. The paper casts a questioning eye on the unique role of the diffusiveparticle transport mechanism in explaining the Am phenomenon and arguesthat the so-called tidal effects might be of great importance incontrolling diffusion processes. A short period cutoff at =~1.2d as wellas a 180-800d gap were found in the orbital period distribution (OPD) ofAm binaries. The existence of the former can be ascribed to the state ofthe primaries with the almost-filled Roche lobes. The latter couldresult from the combined effects of the diffusion, tidal mixing andstabilization processes. Because the tidal mixing might surpassdiffusion in the binaries with the orbital periods P_orb_ less thanseveral hundred days and might thus sustain the He convection zone,which would otherwise disappear, no Am stars should lie below thisboundary. The fact that they are nevertheless seen there implies theexistence of some stabilization mechanism (as, e.g., that recentlyproposed by Tassoul & Tassoul 1992) for the binaries with orbitalperiods less than 180d. Further evidence is given to the fact that theOPD for the Am and the normal binaries with an A4-F1 primary arecomplementary to each other, from which it stems that Am stars are closeto the main sequence. There are, however, indications that they haveslightly larger radii (2.1-3 Rsun_) than expected for theirspectral type. The generally accepted rotational velocity cutoff at=~100km/s is shown to be of little value when applied on Am binaries ashere it is not a single quantity but, in fact, a function of P_orb_whose shape is strikingly similar to that of the curves of constantmetallicity as ascertained from observations. This also leads to thewell known overlap in rotational velocities of the normal and Am starsfor 402.5d.We have exploited this empirical cutoff function to calibrate thecorresponding turbulent diffusion coefficient associated with tidalmixing, having found out that the computed form of the lines of constantturbulence fits qualitatively the empirical shape of the curves ofconstant metallicity. As for larger orbital periods(20d55km/s found by Burkhart(1979) would then be nothing but a manifestation of insufficientlypopulated corresponding area of larger P_orb_.
| Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue. We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.
| Protoalgols and quasi-algols Observational characteristics of 11 extremely young close binary systemsassociated with accretion disks are given. Some of these stars have beenknown as irregular variables of the T Tauri or Ae/Be Herbig type (V 628Cas, BO Cep, IL Cep, TY CrA, T Ori, RZ Psc, and VY Tau). Others (BM Ori,EY Ori, and V 1016 Ori) are associated with the extremely young Orioncluster; two of them are components of the Orion Trapezium complex(Theta-prime Ori). The nonstationary accretion from the disk to thecomponents of these stars can partially account for the observedphenomena.
| Liste des étoiles Ap et Am dans les amas ouverts (édition révisée) Not Available
| Machine-readable version of the Parenago catalogue of stars in the area of the Orion nebula Not Available
| Which evolution for an AM star? The behavior of calcium abundance is examined in relation to theevolutionary stage of some Am stars in three star clusters. It appearsthat, the more the Am star is evolved, the less is its calciumdeficiency. This observation makes it possible to suppose that DeltaDelphini stars and A-F giant stars photometrically similar to classicalAm stars could be descendants of the Am stars.
| Liste des étoiles Ap et Am dans les amas ouverts (Edition révisée) Not Available
| Walraven photometry of nearby southern OB associations Homogeneous Walraven (VBLUW) photometry is presented for 5260 stars inthe regions of five nearby southern OB associations: Scorpio Centaurus(Sco OB2), Orion OB1, Canis Major OB1, Monoceros OB1, and Scutum OB2.Derived V and (B - V) in the Johnson system are included.
| Eclipsing binaries, Lacerta to Orion, in 1969-1986 Photoelectric and visual observations of 37 known and suspectedeclipsing binaries are discussed. Revised light elements are derived forHP Lyr, V839 Oph and V530 Ori. WZ Leo is probably constant. Both of thealternative periods given in the literature for UW Ori appear to beincorrect. The period of V543 Ori is confirmed to be 52.42d., and not26.21d.
| Catalog of AP and AM stars in open clusters The previous results of Raab (1922), Markarian (1951), and Collinder(1931) have been used to catalog Ap and Am stars that are in the fieldof open clusters. Tabular data are presented for the clusterdesignation, the HD or HDE number, the right ascension (1900), thedeclination (1900), and the magnitude. Also listed are the spectraltypes and, for certain stars, the probability of cluster membership.
| The spectrum of EY ORI near the secondary minimum Results of spectral observations of the binary system EY Ori near thesecondary minimum are presented. A number of peculiar properties in thelinear spectrum of the star have been detected. The spectrum of thesecondary component is not observed. During the phases 0.52-0.58, in thecourse of 1 day, the radial velocities were found to deviate from theradial velocity curve. With respect to the character of its spectrum, EYOri is similar to typical Orion variables.
| Absolute parameters of stars in semidetached eclipsing binary systems A number of questions concerning the absolute parameters of stars insemidetached binary systems are addressed. Consideration is given to:similarities between Algol-type binaries and unevolved detached binarieswith respect to the mass-luminosity law; and the single-line classicalAlgol candidates with known mass functions and photometric solutions formass ratio. It is shown that the validity of the mass luminosity-lawcannot be verified for individual Algol-type binaries though it doeshold well on average; and (2), the existence of a definite class ofsd-binaries not containing a proportion of significantly undersize typesis apparent. The conclusions are found to be in general agreement withthe observations of Hall and Neff (1979).
| A Catalogue of Classical Evolved Algol-Type Binary Candidate Stars Not Available
| Catalogue of Eclipsing and Spectroscopic Binary Stars in the Regions of Open Clusters Not Available
| A uvby, beta photometric survey of southern hemisphere A uvby, beta photometric study of southern hemisphere eclipsing binarystars has been undertaken at Cerro Tololo Inter-American Observatory.The standardized colors and V magnitudes for 288 binaries at quadratureand/or at minimum are presented, along with an indication of theaccuracy of the standardization and photometry. Discussions of theresolving time of the pulse-counting photometers and of the atmosphericextinction at CTIO are included.
| Statistics of categorized eclipsing binary systems Lightcurve shapes, periods, and spectral types The statistics of the light curve morphologies, eclipse depths, orbitalperiods, and spectral types of about 1000 eclipsing binary systems areexamined, after attempting to subdivide these binaries into variousbasic evolutionary categories. The applicability of statisticalcriteria, based on light curve morphologies and eclipse depths, for thecategorization of eclipsing binaries has been found more limited thanpreviously believed. In particular, EW-type light curves turn out to begood indicators of contact systems (though not conversely), while EA-and EB-type light curves have little physical significance. Moreover,the study reveals a strong deficit of short-period noncontact systems inthe whole spectral range, together with an underabundance of early-typecontact binaries (compared with the number of late-type contact pairs).Interestingly, the distribution of evolved Algol-type systems isshifted, on average, to periods longer than those of unevolved detachedsystems in the OB and early A spectral range (and to shorter periods inthe F spectral range).
| Contribution to the Study of Composite Spectra - Part Two - A-Type Am-Type Ap-Type Spectroscopic Binaries Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1982A&A...107..215G&db_key=AST
| A catalogue of parameters for eclipsing binaries Not Available
| The photoelectric observations of eclipsing variable EY Ori. Not Available
| A comparison of the orbital inclinations of the spatially close spectroscopic double stars The reported investigation takes into account 888 spectroscopicbinaries. It was possible to obtain 120 groups whose elements arespatially close according to the given definition. These 120 groupscontain 313 spectroscopic binaries. 136 of these binaries are 2-spectrumsystems, 177 are 1-spectrum systems, and 62 are eclipsing binaries. Thenumber of systems with known luminosity class is 54. The spectraldistribution of the 313 systems is discussed. The orbital inclinationsand other parameters are presented in a table.
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Orion |
Right ascension: | 05h31m18.41s |
Declination: | -05°42'13.5" |
Apparent magnitude: | 9.517 |
Proper motion RA: | 0.3 |
Proper motion Dec: | -0.3 |
B-T magnitude: | 10.393 |
V-T magnitude: | 9.59 |
Catalogs and designations:
|